Откуда приходят микроволны?
Для меня главный урок Ньютона и Фридмана сводится к максиме: «Экстраполируйте смелее». Берите законы физики, как вы их понимаете, применяйте их к ещё не исследованным ситуациям и смотрите, не предскажут ли они что-нибудь такое, что можно наблюдать. Ньютон взял законы движения, которые Галилей открыл для Земли, и экстраполировал их на Луну и другие небесные тела. Фридман взял законы движения и гравитации, которые Эйнштейн открыл, опираясь на данные о Солнечной системе, и экстраполировал их на всю Вселенную. Кажется, эта максима должна стать распространённым научным методом. В частности, можно было бы ожидать, что после 1929 года, когда фридмановская идея расширяющейся Вселенной получила признание, учёные по всему миру станут соревноваться друг с другом в систематическом изучении того, что случится, если экстраполировать её в прошлое. Ну, если вы так подумали, то ошиблись… Как бы учёные ни настаивали, что они заняты рациональным поиском истины, они, как и все люди, имеют слабости: учёные испытывают предубеждения, зависят от чужого мнения и повинуются стадному инстинкту. Чтобы преодолевать эти недостатки, требуется нечто большее, чем просто талант к вычислениям.
Для меня следующим космологическим супергероем, который сделал необходимые выводы, был ещё один русский учёный — Георгий Гамов. Научным руководителем его диссертации в Ленинграде был не кто иной, как Александр Фридман. Хотя Фридман умер на втором году совместной работы, Гамов унаследовал как идеи, так и интеллектуальную смелость Фридмана.
Космический плазменный экран
Раз Вселенная расширяется, значит, в прошлом она должна была иметь большую плотность. Но всегда ли она расширялась? Вероятно, нет: работа Фридмана допускает, что когда-то Вселенная могла сжиматься, и всё вещество, двигавшееся к нам, постепенно замедлилось, остановилось и начало ускоряться — но уже направляясь от нас. Такой космический отскок мог случиться, только если плотность вещества была гораздо ниже известного теперь значения. Гамов решил систематически исследовать другую возможность, более общую и радикальную: расширение, имеющее начало. Как он объяснял в книге 1946 года, если уподобить космическую драму кинофильму и запустить его в обратную сторону, мы увидим, как плотность Вселенной беспредельно возрастает. Поскольку межгалактическое пространство заполнено водородом, по мере продвижения назад во времени этот газ будет становиться всё плотнее, а значит, всё горячее. Если нагревать ледяной куб, он расплавится. Если продолжать нагревать жидкую воду, она превратится в газ — пар. Аналогично, если продолжать нагревать газообразный водород, он перейдёт в четвёртое состояние — плазму. Почему? Дело в том, что атом водорода — это просто электрон, обращающийся вокруг протона, а газообразный водород — это просто скопление таких атомов, сталкивающихся друг с другом. Когда температура поднимается, атомы движутся быстрее и сталкиваются друг с другом сильнее. Если становится достаточно горячо, удары оказываются настолько разрушительными, что атомы распадаются на части, а электроны и протоны начинают двигаться независимо. Водородная плазма — это и есть «суп» из свободных электронов и протонов.
Рис. 3.3. Свету от далёких источников требуется время, чтобы достичь Земли, поэтому, заглядывая вдаль, мы смотрим и вглубь времён. За самыми далёкими галактиками мы видим непрозрачную стену светящейся водородной плазмы, излучению которой потребовалось около 14 млрд лет, чтобы дойти до нас. В то время водород, который заполняет пространство сегодня, был разогрет настолько, что представлял собой плазму. Нашей Вселенной тогда было всего около 400 тыс. лет. (На основе рисунка группы NASA/WMAP.)
Иными словами, Гамов предсказал, что наша Вселенная началась с горячего Большого взрыва и что плазма некогда заполняла весь космос. Причём особенно интересно, что предсказание проверяемо: если холодный газообразный водород прозрачен и невидим, то горячая водородная плазма непрозрачна и ярко светится, подобно поверхности Солнца. Это означает, что когда мы заглядываем дальше в космос (рис. 3.3), мы видим сначала старые галактики, за ними молодые галактики, затем прозрачный газообразный водород, а затем стену сияющей водородной плазмы. Мы не сможем увидеть, что за этой стеной, поскольку она непрозрачна, а значит, скрывает всё, что было до неё. Более того, как показано на рис. 3.4, мы должны видеть это во всех направлениях, поскольку, куда бы мы ни взглянули, мы смотрим назад во времени. Получается, мы должны увидеть окружающую нас гигантскую плазменную сферу.
В книге 1946 года Гамов, излагая теорию Большого взрыва, предсказал, что у нас должна иметься возможность наблюдать эту плазменную сферу. Он поручил своим ученикам Ральфу Альферу и Роберту Херману проработать этот вопрос, и несколько лет спустя они опубликовали статью, в которой предсказали, что эта сфера будет светиться с температурой около 5° выше абсолютного нуля, а значит, в основном будет испускать микроволны, а не видимый свет. К сожалению, Альферу и Херману не удалось убедить астрономов поискать фоновое космическое микроволновое излучение, и их работа была почти забыта, как и фридмановское открытие расширения Вселенной.
Рис. 3.4. Всё выглядит так, как если бы мы находились в центре гигантской плазменной сферы. Мы видим плазменную стену с предыдущего рисунка во всех направлениях.
Как увидеть послесвечение
К 1964 году группа принстонских учёных поняла, что доступный для наблюдения микроволновый сигнал должен существовать, и планировала начать его поиски, но её неожиданно опередили. В том году Арно Пензиас и Роберт Вильсон испытывали в «Белл лабораториз» в штате Нью-Джерси самый совершенный в то время микроволновый телескоп. Они обнаружили нечто загадочное: телескоп регистрировал сигнал, который они не могли объяснить, причём сигнал не менялся, куда бы ни направляли аппарат. Странно! Учёные предполагали регистрировать сигналы только при наведении на конкретные объекты на небе, например на Солнце или на спутник с микроволновым передатчиком. Но вместо этого складывалось впечатление, что всё небо светится с температурой 3° по абсолютной шкале — очень близкой к 5°, предсказанным Гамовым и его коллегами. Радиоастрономы стали проверять локальные источники шума — на время подозрения пали на голубей, которые гнездились в телескопе и оставляли там помёт. Как-то раз я обедал с Арно. Он рассказал, что голубей посадили в деревянный ящик с пищей и послали в отдалённый кампус «Белл лабораториз», чтобы птиц выпустили там. К сожалению, голуби вернулись. В книге Арно уклончиво сказано, что физики всё-таки «избавились» от голубей. Я, напоив его вином, выяснил правду: это было сделано с применением огнестрельного оружия… Голубей устранили, но загадочный сигнал остался: Пензиас и Вильсон открыли космический микроволновый фон, слабое послесвечение нашего Большого взрыва.[9]
Это открытие стало сенсацией и было отмечено Нобелевской премией по физике 1978 года. Из вычислений Гамова и его учеников следовало, что плазменная сфера на рис. 3.4 должна быть примерно вдвое холоднее солнечной поверхности, а её горячее излучение шло через космос 14 млрд лет, прежде чем достигло нас, и по пути оно остыло в тысячу раз — до наблюдаемых 3° выше абсолютного нуля, — потому что пространство тысячекратно расширилось. Иными словами, вся Вселенная была когда-то горячей, как звезда, а дикая тысячекратная экстраполяция, применённая Гамовым в его теории Большого взрыва, была проверена и подтверждена.
«Детские фото» Вселенной
Когда плазменная сфера была обнаружена, началась гонка: кто первый сделает её фотографии? Поскольку температура излучения была почти одинаковой во всех направлениях, изображения Пензиаса и Уилсона выглядели как на белых шуточных открытках с подписью «Сан-Франциско в тумане». Чтобы получить интересные фотографии, которые можно было бы считать первыми «детскими снимками» Вселенной, нужно было увеличить контрастность, регистрируя малейшие изменения от места к месту. Такие вариации должны существовать: если бы в прошлом условия везде были идентичными, то по законам физики они бы оставались идентичными и сейчас, а это прямо противоречит картине, которую мы наблюдаем (галактики в одних местах и пустота в других).
Однако сделать «детские фотографии» оказалось настолько трудно, что для этого понадобилось почти 30 лет. Для подавления измерительных шумов Пензиас и Уилсон воспользовались жидким гелием, охлаждавшим детектор до температуры, близкой к температуре космического микроволнового фона. Но флуктуации температуры от места к месту на небе, как оказалось, должны составлять тысячные доли процента, так что для получения «детских фотографий» требовалась в 100 тыс. раз более высокая чувствительность, чем была доступна Пензиасу и Уилсону. Экспериментаторы по всему миру принимали этот вызов — и терпели поражение. Одни говорили, что это безнадёжно, другие отказывались сдаваться. Первого мая 1992 года, когда я был аспирантом, по молодому ещё интернету разнёсся слух: Джордж Смут собирается объявить о результатах самого амбициозного эксперимента того времени по изучению микроволнового фона, который выполнялся спутником НАСА под названием COBE (Cosmic Background Explorer). Моего научного руководителя Джо Силка пригласили представить доклад Джорджа, и прежде чем он улетел в Вашингтон, я спросил, что он думает об этом открытии. Джон предположил, что они не увидели космические флуктуации, а просто зарегистрировали радиошум нашей Галактики.
Но, вопреки ожиданиям, Смут взорвал бомбу, которая изменила не только мою карьеру, но и космологию как науку. Он со своей командой действительно обнаружил флуктуации! Стивен Хокинг назвал это «самым важным открытием в космологии за целое столетие, если не вообще», поскольку «детские фотографии» 400-тысячелетней Вселенной несут важнейшую информацию о нашем космическом происхождении.
«Золотая лихорадка»
Теперь, когда COBE нашёл золото, началась лихорадка. Как видно на рис. 3.5, карта неба, составленная COBE, размытая. Низкое разрешение изображений не позволило показать детали размером менее 7°. Естественно, следующим шагом стало детальное наблюдение небольшого участка неба с высоким разрешением и низким уровнем шума. На таких картах высокого разрешения закодирован ответ на некоторые ключевые космологические вопросы. Я люблю фотографировать (в возрасте 12 лет мне удалось, разнося по Стокгольму рекламки, накопить денег на первую камеру), так что задача фотографирования Вселенной меня сразу увлекла. Кроме того, мне нравилось возиться со снимками и компьютерной графикой, будь то иллюстрации для школьной стенгазеты «Кураре» или изображения для условно-бесплатной компьютерной игры FRAC (трёхмерный клон «Тетриса»), доход от которой позволил мне объехать мир в 1991 году. Так что я бывал счастлив, когда экспериментаторы позволяли мне вместе с ними превращать данные в карты неба.
Моей первой удачей стала встреча с молодым принстонским профессором Лайманом Пейджем. Мне понравилась его весёлая мальчишеская улыбка, и после его доклада на конференции я набрался смелости предложить ему сотрудничество. Пейдж понравился мне ещё больше, когда я узнал, что до аспирантуры он годами бороздил Атлантику под парусом. В итоге профессор доверил мне данные, полученные с помощью микроволнового телескопа в канадском городе Саскатун, которым он со своей группой три года сканировал участок неба непосредственно возле Северного полюса.
Рис. 3.5. Когда демонстрируется карта неба целиком, удобно проецировать её на плоскую поверхность так же, как это делается с картой Земли (вверху): просто интерпретируется она как взгляд вверх, а не вниз, в землю. «Детское фото» нашей Вселенной, полученное COBE (внизу слева) было нечётким. Это обусловило повторение экспериментов по рассматриванию участков неба с более высоким разрешением (посередине слева). Позднее спутники WMAP и «Планк» построили карты всего неба с высоким разрешением (справа) — 3 мегапиксела и 50 мегапикселов соответственно. Эти небесные карты повёрнуты относительно карты Земли так, что центральная горизонтальная линия соответствует не плоскости земного экватора, а плоскости Галактики (серая полоса слева внизу); Северный полюс Земли указывает на центр саскатунской карты. (Карта Земли: Патрик Дайнин.)
Преобразование данных в карту оказалось делом удивительно сложным: они представляли собой не фотографии неба, а длинные таблицы чисел, указывающих, сколько вольт получено при сложении и вычитании сигналов от различных участков неба всевозможными способами. Правда, это занятие оказалось на редкость увлекательным и потребовало от меня максимального напряжения и всех моих знаний в области теории информации и вычислительных методов. Я провёл много вечеров в своём мюнхенском кабинете постдока, пока не довёл до ума саскатунскую карту (рис. 3.5), подгадав как раз к большой космологической конференции во Французских Альпах. Я прочитал уже сотни докладов, но лишь некоторые отпечатались в памяти как волшебные моменты. Это как раз один из тех случаев. Когда я поднялся на подиум и оглядел аудиторию, сердце моё забилось: она была заполнена людьми, многих из которых я знал по работам, но большинство понятия не имело, кто я такой. Они ехали в Альпы скорее затем, чтобы покататься на лыжах, а не выслушивать новичков вроде меня. Однако явившихся очень волновало всё, что касалось изучения космического микроволнового фона, и я чувствовал гордость. Из сегодняшнего дня 1996 год видится как докембрий: мы делали доклады, пользуясь пачками целлулоидных «прозрачек». В моей колоде был туз — слайд с изображением саскатунской карты (рис. 3.5) в виде увеличенного фрагмента карты COBE. Я почувствовал возбуждение аудитории. Во время перерыва после доклада люди толпились у проектора, задавая вопросы и требуя снова и снова показывать тот слайд. Дик Бонд, один из авторов космологии микроволнового фона, сказал мне с улыбкой: «Поверить не могу, что Лайман поделился с вами данными!»
Я чувствовал, что космология вступила в золотой век и движется по замечательной спирали: открытия притягивают людей и гранты, а это, в свою очередь, ведёт к новым открытиям. Уже в следующем месяце, в апреле 1996 года, было одобрено финансирование двух новых спутников с кардинально улучшенными по сравнению с COBE разрешением и чувствительностью. Одним из них стал проект WMAP, открытый НАСА по инициативе Лаймана Пейджа и его близких коллег, а вторым — европейский проект «Планк» (в ходе подготовки грантовой заявки я имел удовольствие делать для него вычисления и прогнозы). Поскольку космические экспедиции требуют многолетнего планирования, группы по всему миру включились в гонку, стремясь опередить WMAP и «Планк» или, по крайней мере, получить до их запуска какие-нибудь легкодоступные результаты. Вот почему саскатунский проект оказался первым из многих, с которыми я имел удовольствие сотрудничать в деле анализа данных. Я работал с экспериментаторами из проектов HACME, QMAP, Tenerife, POLAR, PIQ и Boomerang, получая из их данных «детские фото» Вселенной. В основном я стремился стать посредником между теорией и экспериментом. Я чувствовал, что космология превращается из бедной данными дисциплины в область, где данных больше, чем люди могут обработать, и решил создать инструменты, позволяющие извлекать всё возможное из этой лавины данных. В частности, я опирался на теорию информации, чтобы выяснить, сколько полезных данных о Вселенной содержится в заданном наборе данных. Обычно в мегабайтах, гигабайтах или терабайтах измерений имеется небольшое число битов космологической информации, сложным образом зашифрованных и скрытых в огромном количестве шума от электроники детектора, атмосферных помех, галактического излучения и т. д. Хотя существовал идеальный математический способ извлечения этой иголки из стога сена, на практике он обычно оказывался слишком трудоёмким и требовал миллионов лет компьютерных вычислений. Я публиковал различные методы анализа данных, которые не всегда были идеальными, но позволяли извлекать почти всю информацию достаточно быстро с точки зрения наших практических задач.
Я по многим причинам люблю космический микроволновый фон. Например, я благодарен ему за первый брак, за сыновей Филиппа и Александра. Я встретил Анжелику де Оливейра Косту, свою (теперь уже бывшую) жену, когда она приехала из Бразилии в Беркли в качестве аспирантки Джорджа Смута. Нам довелось тесно сотрудничать не только в деле перемены подгузников, но и во многих из упомянутых проектов по анализу данных. Одним них был QMAP, телескоп, запущенный на высотном аэростате Лайманом Пейджем, Марком Девлином и их коллегами, чтобы избавиться от большей доли микроволнового шума, вызываемого атмосферой.
Первое мая 1998 года, уже около двух часов ночи, а дела обстоят весьма скверно. До вылета на космологическую конференцию в Чикаго, где я должен рассказать о новых результатах QMAP, осталось всего семь часов, но мы с Анжеликой, погружённые в сомнения, ещё сидим в кабинете в Принстонском институте перспективных исследований. До сих пор от экспериментов в области космического микроволнового фона требовалась полная уверенность в том, что не сделано ошибок и не упущено ничего важного. Ключом к достоверности в науке служит получение независимых экспериментальных подтверждений ваших результатов. Но, поскольку люди смотрели в разных направлениях и пользовались инструментами с разным разрешением, прежде нельзя было сравнить изображения неба, полученные в двух разных экспериментах, и проверить, согласуются ли они. Вплоть до этого момента карты, построенные телескопами в Саскатуне и QMAP, имели значительное перекрытие на небе вдоль полосы бананообразной формы (рис. 3.5). Мы с Анжеликой в смятении смотрели на дисплей: карты Саскатуна и QMAP совершенно не согласовывались! Щурясь так и сяк, мы пытались убедить себя, что это несоответствие — лишь инструментальный шум. Но выдавать желаемое за действительное можно лишь до определённого предела. Столько сделано — и тут выясняется, что по крайней мере одна из этих карт полностью ошибочна. И как делать об этом доклад?! Это обернулось бы позором не только для нас, но и для всех, кто участвовал в экспериментах.
Неожиданно Анжелика обнаруживает подозрительный знак «минус», наличие которого в программе, грубо говоря, приводит к тому, что карта QMAP отображается вверх ногами. Мы исправляем его, перезапускаем программу и недоверчиво поглядываем друг на друга, пока на экран выводится новая карта. Теперь согласие между двумя картами просто потрясающее! Поспав несколько часов, мы летим в Чикаго. Я на ходу готовлю доклад, несусь от арендованного автомобиля к аудитории Фермилаба[10] и едва успеваю к началу своего выступления. Я настолько возбуждён, что до самого вечера не осознаю своей новой ошибки: автомобиль исчез.
— Где вы его поставили? — спрашивает охранник.
— Да вот тут, прямо напротив гидранта, — отвечаю я, и тут до меня доходит — ну надо же! — второй раз за день…
Космический мяч для пляжного волейбола
«Золотая лихорадка» — добыча данных из микроволнового фона — продолжалась много лет. Было поставлено более 20 различных экспериментов, и каждый из них её подхлёстывал (о некоторых я расскажу). А затем пришёл черёд WMAP. В два часа дня 11 марта 2003 года аудитория была переполнена: мы не отрывались от экрана, где участники WMAP в прямом эфире телевидения НАСА рассказывали о своих результатах. Если наземные и аэростатные эксперименты могли нанести на карту лишь часть неба, то спутник WMAP картографировал всю небесную сферу, как ранее COBE, но с радикально выросшими чувствительностью и разрешением. Я чувствовал себя как в детстве, на новогодней ёлке, когда наконец приехал Санта-Клаус, — только этого момента я с нетерпением ждал не месяцы, а годы. Ожидание того стоило: полученные изображения ошеломляли. При этом самоотверженные учёные прошли путь от выделения финансирования до получения результатов менее чем за 6 лет — втрое быстрее, чем COBE. Руководитель проекта WMAP Чак Беннет чуть не умер, выдерживая график. Другой ключевой участник проекта Дэвид Спергел рассказал мне, что у Чака случился инфаркт и он провёл три недели в больнице.
Наконец, они открыто разместили все данные в интернете, и космологи всего мира смогли попробовать самостоятельно проанализировать их. Теперь пришло время вкалывать мне. Измерения WMAP были безупречны, но загрязнены радиошумом нашей Галактики: на карте COBE (рис. 3.5) он выглядит как горизонтальная полоса. Неприятность в том, что такое микроволновое загрязнение от нашей и других галактик охватывает всё небо, даже если где-то его уровень слишком низок, чтобы быть заметным. Однако это загрязнение имеет цвет, отличный от цвета сигнала (его интенсивность по-другому зависит от частоты), а WMAP получил изображение неба на пяти частотах. Группа WMAP использовала эту дополнительную информацию для очистки, но я раздумывал над куда лучшим методом, основанном на теории информации, который дал бы более чистую карту с более высоким разрешением (рис. 3.5, внизу справа). Спустя месяц работы вместе с Анжеликой и моим старым другом Эндрю Гамильтоном мы отправили статью в журнал, и жизнь стала возвращаться в нормальное русло. Я развлекался, изготавливая карту микроволнового фона в виде мяча (рис. 3.4). Карта так понравилось команде WMAP, что они сделали собственную версию и напечатали её на мяче для пляжного волейбола, который теперь украшает мой кабинет. Я зову его «своей Вселенной», поскольку это каноническое изображение границы, охватывающей всё, что мы в принципе можем наблюдать.
«Ось зла»
Важнейшие космологические данные зашифрованы в размерах пятен, заметных на космическом микроволновом фоне (ниже я объясню подробнее). Кроме того, мы можем представить двумерную карту микроволнового фона как сумму множества мультиполей (рис. 3.6). (Аналогично можно раскладывать звуки и цвета на частоты.) Карты-мультиполи, по сути, отражают вклад пятен разного размера, и ещё со времён COBE складывалось впечатление, что со вторым мультиполем, называемым квадруполем, творится нечто странное: самые крупные пятна на карте были видны хуже, чем ожидалось. Однако никому не удавалось получить карту этого квадруполя и посмотреть, что с ним происходит: для этого требовалась карта всего неба, а микроволны от нашей Галактики загрязняли части неба так, что восстановить изображение было невозможно.
Так было прежде, но наша карта казалась настолько чистой, что, возможно, могла использоваться для всего неба. Как-то раз, глубокой ночью, незадолго до того, как мы собирались подавать статью о карте, когда Анжелика и дети уже спали, да я и сам собирался на боковую, мне стало любопытно, как выглядит пресловутый квадруполь, и я решил написать компьютерную программу, выстраивающую его изображение. Когда изображение наконец появилось на дисплее (рис. 3.6, слева), оно заинтриговало меня. Паттерн не просто был слабым, как и ожидалось (флуктуации температуры в горячих и холодных пятнах близки к нулю), — вместо случайной мешанины пятен, как предсказывала теория, он образовывал забавный одномерный пояс, окружающий небо. Я уже засыпал, но решил вознаградить себя за ночное программирование и отладку ещё одним изображением, так что поменял в программе число 2 на 3 и перезапустил её, чтобы нарисовать третий мультиполь, называемый октуполем. Ого! Что за?.. Появился другой одномерный пояс (рис. 3.6, посередине), по-видимому, совпадающий по ориентации с квадруполем. Но наша Вселенная не должна быть такой! В отличие от человеческих портретов, на изображениях Вселенной не предполагалось никакого выделенного направления вроде «верха»: они должны выглядеть, как ни поверни, примерно одинаково. Но на «детских снимках» Вселенной на дисплее были полосы, как у зебры, вытянутые в одном направлении. Подозревая, что в моей программе ошибка, я поменял 3 на 4, но рисунок четвёртого мультиполя (рис. 3.6, справа) выглядел как ожидалось: случайные пятна без выделенного направления.
Рис. 3.6. Когда карта WMAP, представленная на рис. 3.5, раскладывается на сумму мультиполей, показывающих пятна всё меньших размеров, то на первых двух мультиполях (слева и посередине) видно загадочную симметрию относительно некоего направления, названного «осью зла». Различные цвета показывают, насколько теплее или холоднее среднего небо в данном направлении. Шкала размечена в микрокельвинах, миллионных долях градуса.
Дважды всё перепроверив, мы с Анжеликой упомянули о неожиданном открытии в своей статье, посвящённой карте. Я был поражён — такой поднялся шум. (Об этом рассказала газета «Нью-Йорк таймс», и редакция даже прислала к нам фотографа.) Мы стали изучать явление подробнее, как и другие группы (одна назвала выделенное направление «осью зла»). Кто-то доказывал, что это статистическая флуктуация или галактическое загрязнение. Другие утверждали, что это явление ещё загадочнее, чем считали мы, находя с применением другого метода дополнительные аномалии даже для мультиполей 4 и 5. Некоторые экзотические объяснения, вроде того, что мы живём в небольшой «вселенной-баранке», где пространство замкнуто на себя, были впоследствии отброшены, но и по сей день я озадачен «осью зла» не меньше, чем в ту первую ночь.
Совершеннолетие микроволнового фона
В 2006 году нас с Анжеликой пригласили в Стокгольм, чтобы помочь отметить присуждение Нобелевской премии по физике за открытие COBE. Как часто бывает, в команде COBE были трения по вопросу о научном вкладе участников. Премию разделили Джордж Смут и Джон Мазер, и я с облегчением увидел их умиротворяющий подход к делу. Они смогли пригласить команду COBE приехать и погреться в лучах заслуженной славы. Чувствовалось, что нескончаемая череда вечеринок помогла преодолеть трещины в отношениях, подчёркивая очевидное — все участники не просто помогли двум коллегам получить премию, а совершили нечто гораздо более важное: «детские фотографии» Вселенной породили целое исследовательское направление и начали новую эру в космологии. (Как бы мне хотелось, чтобы Гамов, Альфер и Херман тоже были там!)
21 марта 2013 года я проснулся в пять утра в напряжённом ожидании и сразу настроился на прямую интернет-трансляцию из Парижа, где команда спутника «Планк» показывала свои первые изображения микроволнового фона. За 10 лет ACBAR, ACT, Южный полярный телескоп[11] и т. д. углубили наши знания о микроволновом фоне, но это была крупнейшая веха со времён WMAP. Пока я брился, Джордж Эфстатиу рассказывал о результатах. Мне вспомнился март 1995 года, когда Джордж пригласил меня в Оксфорд поработать с ним над новым методом анализа данных «Планка». Это был первый раз, когда меня пригласили в исследовательскую коллаборацию, и я был очень за это благодарен. Мы разрабатывали новую технику очистки загрязнённых изображений, которая должна была помочь в обосновании финансирования «Планка» Европейским космическим агентством. И вот результаты наконец станут известны постаревшему на 18 лет Максу!
Когда Джордж показал карту неба, полученную «Планком», я отложил бритву, чтобы вывести на дисплей и очищенную карту WMAP. «Они так похожи! — подумалось мне. — И „ось зла“ на месте!» Я поместил обе карты на рис. 3.5, чтобы вы могли их сравнить. Как видите, крупные детали изумительно совпадают, но на карте «Планка» гораздо больше крошечных пятнышек. Значительное увеличение чувствительности и разрешения позволило разобрать детали, слившиеся на карте WMAP. Карта «Планка» определённо оправдывала ожидания! Я спроецировал её на сферу. Благодаря превосходному качеству «Планк» фактически предоставил контрольные данные для оценки работы WMAP, и после обработки мне стало ясно, что команда WMAP заслужила «пять с плюсом» (как и команда самого «Планка»). Однако я думаю, что главный сюрприз, который преподнёс «Планк», состоит в том, что не обнаружилось никаких сюрпризов: в основном он подтвердил космологическую картину, которая у нас уже была, но с гораздо большей точностью. Исследования космического микроволнового фона вступили в пору зрелости.
Итак, мы отодвинули пределы наших знаний на 14 млрд лет — до 400 тыс. лет после Большого взрыва — и увидели, что всё появилось из заполнявшей космос горячей плазмы. В те времена не было ни людей, ни планет, ни даже звёзд с галактиками — только атомы, сталкивающиеся друг с другом и излучающие свет. До разгадки происхождения этих атомов мы ещё не добрались.