Кристаллография пролила свет на молекулярную структуру

We use cookies. Read the Privacy and Cookie Policy

О чем вы думаете, когда рядом с вами произносят слово «кристалл»? Хрустальный шар[25] на моем письменном столе подсказывает, что можно подумать о винном бокале или о люстре. Вероятно, мало кто подумает о «тайне жизни». Однако позвольте мне начать.

Значит, винный бокал или подвеска люстры? Нет, ни то, ни другое не имеют никакого отношения к кристаллам. На самом деле стекло – это полная противоположность кристаллам. Все вещества состоят из атомов, молекул или ионов, и если эти частицы организованы в упорядоченные структуры, и если эти структуры имеют трехмерное строение, то мы имеем дело с кристаллами. Соль, леденцы и алмаз – все эти вещи состоят из регулярно повторяющихся ячеек, или решеток, и все они имеют кристаллическое строение, а стекло является веществом «аморфным», то есть составляющие его атомы кремния и кислорода не образуют упорядоченных повторяющихся структур. Кристаллы имеют определенную, неизменную точку плавления и раскалываются вдоль определенных плоскостей, а аморфные вещества не имеют определенной точки плавления, и при нагревании размягчаются и плавятся постепенно, в некотором диапазоне температур, а при раскалывании разбиваются случайным образом. Но почему тогда хрусталь называют хрусталем, то есть кристаллом? Потому что он сверкает, как алмаз – истинный кристалл. Этот эффект достигается добавлением в хрусталь оксида свинца, солей бария или цинка для изменения коэффициента преломления – свойства прозрачного вещества изменять направление проникшего в него светового луча.

Упоминание о «преломлении света» очень уместно в нашей истории о кристаллах и «тайне жизни». История эта начинается со знаменитого открытия в 1895 году Вильгельмом Рентгеном таинственной формы радиации, которую в Англии назвали икслучами, поставив по математической традиции литеру «Икс» на место неизвестной величины. Были и другие ученые, которые раньше Рентгена заметили это странное излучение, возникающее в катодной трубке, в которой ток высокого напряжения заставляет электроны перемещаться в вакууме от катода к аноду. Но именно Рентген описал и документально подтвердил эффект, который был не в состоянии объяснить.

«Не являются ли рентгеновские лучи особой формой невидимого света?» – заинтересовался немецкий физик Макс фон Лауэ. К тому времени уже было хорошо известно, что при прохождении через кристаллы световые лучи преломляются. Будут ли рентгеновские лучи вести себя так же? Фон Лауэ направил узкий пучок рентгеновских лучей на кристалл сульфата меди, окруженный фотографическими пластинками, чувствительными к воздействию рентгеновского излучения. Ученый заметил, что лучи действительно отклонялись, что доказывало, что они распространяются в пространстве в форме волн так же, как и свет. Дифракция волн создала на фотографических пластинках особую картину, узор, природу которого фон Лауэ не смог расшифровать. Но там, где потерпел неудачу фон Лауэ, преуспели Вильям Брэгг и Лоуренс Брэгг (отец и сын).

Они предположили, что рисунок, полученный на фотопластинках, был результатом отражения рентгеновских лучей от плоскостей атомов в кристалле. Рассуждая от противного, Брэгги предположили, что по этому дифракционному рисунку можно определить расположение атомов или ионов в кристалле. Если атомы объединены в молекулы, то рентгеновские лучи могут помочь установить их структуру.

Для наглядности представим себе следующую аналогию: рассмотрим тень, которую отбрасывает освещенный лучом света предмет неизвестной формы, помещенный в темную комнату. Изменяя положение источника света, можно менять форму тени, отбрасываемой предметом. Собрав все изображения теней, можно, путем расчетов восстановить трехмерную форму изучаемого предмета. Такова, в упрощенном виде, основная идея, лежащая в основе «рентгеновской кристаллографии», одного из мощнейших методов аналитической техники. Сведения о точной молекулярной структуре вещества являются ключом к предсказанию его химических и биологических свойств.

Этот рассказ подвел нас вплотную к «тайне жизни», которая заключается в ДНК и ее знаменитой двойной спиральной структуре. Определение этой структуры стало фундаментом открытия тайны генетики, открыло путь к технологиям рекомбинантной ДНК и к потенциальной возможности замены химиотерапии целенаправленными манипуляциями с генами. Имена Фрэнсиса Крика и Джеймса Уотсона неразрывно связаны с открытием структуры ДНК, так как это именно они впервые использовали шарики и стержни для построения точной трехмерной модели молекулы. Не так широко известно, что Крик и Уотсон разделили Нобелевскую премию с физиком Морисом Уилкинсом, который первым высказал мысль о возможности рентгеноструктурного исследования ДНК, и чья лекция направила интерес Уотсона на исследование ДНК.

Еще меньше известна критически важная роль, которую сыграла в этих исследованиях Розалинд Франклин, коллега Уилкинса по Корорлевскому Колледжу в Лондоне. Именно Розалинд Франклин впервые получила фотографию № 51, фотографию дифракционной рентгеноструктурной решетки молекулы ДНК, фотографию, которая стала ключом к построению Криком и Уотсоном трехмерной молекулярной модели. Уилкинс показал эту фотографию Уотсону без разрешения Франклин, что привело к сильным трениям между ними. Франклин умерла от рака яичников в возрасте 37 лет в 1958 году, за четыре года до вручения Нобелевской премии Крику, Уотсону и Уилкинсу. Розалинд Франклин не могли номинировать на премию, потому что по статуту премии ее не присуждают посмертно.

Отец и сын Брэгги получили Нобелевскую премию по физике за 1915 год за «их заслуги в анализе кристаллических структур с помощью рентгеновских лучей». Эту премию отец и сын не разделили ни с кем, а Макс фон Лауэ опередил их, получив Нобеля 1914 года за «открытие дифракции рентгеновских лучей». Столетие этого события побудило Организацию Объединенных Наций объявить 2014 год «Международным годом кристаллографии». В этом же году исполнилось пятьдесят лет с тех пор, как Нобелевскую премию вручили Дороти Ходжкин за рентгеноструктурный анализ строения таких важных биомолекул, как пенициллин и витамин B12.

Мой хрустальный «кристальный» шар говорит мне, что за достижения в области кристаллографии ученым вручат еще много Нобелевских премий, учитывая, что пока не определены структуры белков клеточных мембран, играющих важную роль в биологических функциях клеток, белков, которые станут мишенью действия лекарств будущего.

Если вы сомневаетесь, то могу поклясться, что у меня действительно есть кристальный шар, хотя он, конечно, сделан из стекла. Настоящие кристальные шары делают из кварца – минерала, который так же, как стекло, состоит из кремния и кислорода, но эти атомы в кварце упакованы в упорядоченные трехмерные структуры. Изготовляют их так: берут большой кусок кварца, придают ему приблизительную шарообразную форму, а затем полируют в цилиндрическом контейнере с помощью абразивной пленки до нужной гладкости. Я попросил прислать мне такой шар. Он, конечно, не позволит мне заглянуть в будущее, но зато будет «живым» свидетельством торжества кристаллографии.