Существует ли лазер в природе?
Существует ли лазер в природе?
Ответ, по-видимому, да! Лазерное излучение с длиной волны около 10 мкм (типичная линия излучения двуокиси углерода, на которой работают мощные СO2 лазеры, находящие широкое применение, в частности для механической обработки материалов) было обнаружено в атмосферах Марса и Венеры в 1981 г. исследователями из Лаборатории экспериментальной физики Центра управляемых полетов им. Годдарда (НАСА). Это излучение уже наблюдалось в 1976 г. студентами Таунса, который стал заниматься проблемой астрофизики, но только в 1981 г. было установлено, что причиной его является естественный лазер.
Инверсная населенность перехода молекулы двуокиси углерода, которая составляет значительную часть атмосферы этих планет, получается в результате солнечного света, и поэтому получается только на освещенной полусфере. Это такой же механизм, как и в лазерах на СO2, построенных на Земле. Они работают на длине волны 10 мкм и используются в качестве мощных лазеров для резки и сварки металлов и других применений. Линии излучения в атмосферах этих планет почти в 100 миллионов раз интенсивнее, чем если бы газ испускал их в условиях термодинамического равновесия при температуре атмосферы. Часть наблюдаемого излучения является излучением, усиленным в инверсно населенной среде. Если бы можно было поместить два зеркала на орбите вокруг этих планет, мы могли бы получить такую же генерацию, которую получаем в земных условиях. Возможности реализации лазера на планетарном масштабе вне нашего понимания, но что будет в будущем, мы не знаем. Эти линии излучения оказались полезными для измерения температур и ветров на Марсе и Венере.
Космические мазеры, как уже говорилось, были обнаружены много лет назад, и нет причин исключать существование и космических лазеров. Однако для их существования требуется более трудный процесс, поскольку необходимо большие энергии фотонов. В начале 1995 г., группа астрономов зарегистрировала усиленное инфракрасное излучение, приходящее от диска водорода, вращающегося вокруг молодой звезды в созвездии Лебедя, находящейся от нас на расстоянии 4000 световых лет. Интенсивность излучения на одной из длин волн, по сравнению с соседними длинами волн, показывает наличие вынужденного излучения (рис. 62). Предварительные наблюдения в 1994 г. одной из звезд, обозначенной MWC349, уже показали интенсивное мазерное излучение от ее диска на длинах волн 850 мкм и 450 мкм, испускаемое водородом. Изучение процессов, которые ответственны за это излучение, привело к предположению, что также возможно излучение на менее коротких длинах волн, испускаемое из области диска вблизи звезды.
Рис. 62. Природный лазер в звезде MWC349. Лазерное излучение происходит в диске водорода, ближайшего к звезде, а мазерное излучение получается в более отдаленных областях. Излучение испускается в плоскости, показанной на рисунке, и достигает Земли, которая случайно оказалась лежащей в этой же плоскости
Исследователи из NASA поместили инфракрасный телескоп на самолете, летающие на высоте 12 500 м. На этой высоте поглощение исследуемого излучения в атмосфере существенно ослабляется. Они наблюдали линию на 169 мкм, интенсивность которой в шесть раз превышала ожидаемую интенсивность при термическом равновесии. Излучение на этой линии производится атомами водорода, ионизованными интенсивным УФ-излучением звезды или из-за более сложных процессов, происходящих в диске. Когда ионы рекомбинируют со свободными электронами, они испускают фотоны. Большая часть излучения испускается спонтанно, но возможно также и вынужденное излучение. Такой же процесс дает мазерное излучение в других частях диска, но в центральных частях наблюдается лазерное излучение, частично, из-за того, что водород там плотнее, частично, из-за того, что интенсивность ультрафиолетового излучения выше. Случайно, диск ориентирован по отношению к Земле так, что можно зарегистрировать лазерное излучение. Диск представляет собой область, где, как полагают, могут формироваться планеты, и наблюдаемое излучение приходит от той части этой «колыбели планет», которая удалена от звезды на расстояние, приблизительно равное расстоянию между Землей и Солнцем. Поэтому лазерное излучение может помочь нам лучше понять состояние газа в диске. Длина волны 169 мкм лежит на границе областей, которые относят к микроволнам, и оптического диапазона. Поэтому можно говорить как о мазерном, так и о лазерном эффекте.
Лазеры в ультрафиолетовой области также существуют. Излучение в этой области было обнаружено с помощью космического телескопа Хаббл. Оно испускается из газового облака вблизи звезды ?-Киля.
Итак, мы можем заключить, что в космосе уже существуют естественные мазеры и лазеры. Поэтому мы можем более точно сказать, что мазеры и лазеры были не изобретены, а открыты[14].
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Наша роль в природе
Наша роль в природе Бог порядка не может дать человечеству общую судьбу или предназначение, однако лично меня в этой дискуссии особенно поражает то, что мы, люди, едва начавшие свое восхождение к технологическим высотам, способны делать смелые заявления, касающиеся
Первые споры о природе света
Первые споры о природе света Со времен глубокой древности человека занимал вопрос: что такое свет? Почему человек обладает таким чудесным свойством видеть окружающий мир во всем многообразии его форм, движения, красок?Ньютон полагал, что свет — это какие-то световые
О природе света
О природе света Борьба материализма и идеализма в физике В этой книжке мы уже видели, как сложен путь науки. Сколько было споров о том, что такое свет — поток частиц или череда волн! Казалось, что в XIX веке этот спор был решен окончательно, притом решен в пользу волновой
Об активном отношении человека к природе
Об активном отношении человека к природе Могущество разума человека состоит в его активном отношении к природе. Человек не только созерцает, но и преобразует природу. Если бы он только пассивно созерцал свет, как нечто найденное в природе, без всякой попытки по-своему
Послеобеденные замечания о природе нейтрона
Послеобеденные замечания о природе нейтрона Ж. Вервье Речь при закрытии Антверпенской конференции 1965 г. В ходе настоящей конференции мы слышали много интересных суждений об объекте, называемом «Нейтрон», от различных ученых из самых разных стран. Мы должны, однако,
23. Существует ли темная сторона Луны?
23. Существует ли темная сторона Луны? Да. Луна получает освещение от Солнца. В любое время у нее есть яркая дневная и темная ночная стороны так же, как у Земли.Это распространенная ошибка: люди называют противоположную сторону Луны, которая отвернута от Земли, ее темной
106. Существует больше, чем одна, Вселенная?
106. Существует больше, чем одна, Вселенная? Природа, по-видимому, стучит у нас над головой и кричит нам, что это не единственная Вселенная. Доказательства приходят из многих источников.Много разных версий «мультивселенной». Пока неясно, как они сочетаются друг с другом в
Зрительные обманы в природе
Зрительные обманы в природе Существуют обманы зрения, которые не подстраиваются кем-либо намеренно, а возникают в природе сами собой. Таковы, например, те миражи, которые случается видеть нередко путешественникам в знойных пустынях.Вот описание миража в африканской
ГЛАВА 13 И НАКОНЕЦ-ТО, ЛАЗЕР!
ГЛАВА 13 И НАКОНЕЦ-ТО, ЛАЗЕР! Сразу же после опубликования работы Шавлова и Таунса и даже до того целый ряд людей стали размышлять о разных способах создания инверсной населенности в инфракрасной и видимой областях. Творческая ментальность исследователя, который
Второй твердотельный лазер
Второй твердотельный лазер В сентябре 1959 г. Таунс организовал конференцию «Квантовая электроника — резонансные явления», на которой, хотя лазер еще не был создан, большинство неформальных дискуссий концентрировалось на лазерах.В этой конференции приняли участие Петер
Гелий-неоновый лазер
Гелий-неоновый лазер Кроме Шавлова, еще два исследователя Bell Labs работали в 1958 г. над проблемой лазера: Али Джаван и Джон Сандерс. Джаван был иранцем по происхождению. Он получил докторскую степень в 1954 г. под руководством Таунса по теме радиоспектроскопии. Он четыре года
Цезиевый лазер
Цезиевый лазер 1961 г. был годом реализации еще двух лазеров, над которыми специалисты работали с самого начала появления концепции лазера. Одним из них был цезиевый лазер. После того как Таунс и Шавлов написали свою работу, было решено, что Таунс попытается построить лазер
Неодимовый лазер
Неодимовый лазер Другой лазер, запущенный в 1961 г. и все еще остающимся одним из главных, — лазер на неодимовом стекле. В 1959—1960 гг. Американская Оптическая Компания также заинтересовалась лазерными исследованиями, которые проводил один из ее ученых, Элиас Снитцер. Эта
Лазер и Луна
Лазер и Луна Bell Labs использовала один из первых лазеров для исследований рельефа поверхности Луны. Во время экспедиции Аполлон 11, отправленной на Луну 21 июля 1969 г., астронавты установили на ее поверхности два уголковых отражателя, способных отражать лазерный свет,