Ридберг и комбинационный принцип
Ридберг и комбинационный принцип
В 1886 г. Александ С. Гершель, сын великого астронома Джона Гершеля, и Генри Десландрес (1853—1948) нашли математические описания различных полосатых спектров. Более того, шведский физик теоретик Иоганн Роберт Ридберг (1854—1919) опубликовал результаты анализа спектров, который он провел в 1890 году. Этот анализ показал, что спектральные серии Бальмера, а также другие серии линий водорода в ультрафиолетовой и инфракрасной областях спектра можно представить общим выражением, которое сегодня носит его имя.
Ридберг интересовался вопросами спектров и начал свои исследования задолго до того, как Бальмер опубликовал свою формулу. Он также интересовался периодической классификацией элементов, которую дал русский химик Дмитрий Менделеев (1834—1907). Менделеев установил, что единственный метод классификации элементов заключается в рассмотрении их атомных весов. Когда элементы располагаются в порядке увеличения атомных весов, обнаруживается явная периодичность их свойств. Таким образом, в рядах увеличивающихся атомных весов получаются колонки химических элементов со сходными свойствами (таблица Менделеева). Интуиция Ридберга привела его к осознанию, что эта периодичность является результатом атомной структуры.

В период между 1882 г. и 1887 г., когда он был ассистентом физического факультета университета Лунда, Ридберг изучал зависимость физических и химических свойств элементов от их атомных весов, рассматривая атомный вес как принципиальный параметр, от которого зависят эти свойства. Он начал с изучения соотношений, имеющих место среди спектральных линий элементов. Проблема, которую он хотел решить, требовала систематического изучения имеющегося спектроскопического материала, для того, чтобы получить полуэмпирическую формулу, которая универсально моделировала бы эти данные.
История науки показывает, что любая область физики проходит фазу, в которой накопленный эмпирический материал обусловливает активность «предварительной обработки», в результате которой возникают общие законы, даже если изучаемое явление не имеет теоретической основы. Примерами являются законы Кеплера небесной механики и закон Бойля—Мариотта для газов.
Такие «предварительные» теоретические модели выполняют двойную функцию. Во-первых, они дают определенную обобщенную основу для систематизации экспериментальных данных, играя роль эмпирических законов. Во-вторых, они играют важную роль в создании более фундаментальных теорий, являясь конструктивным посредником между теоретическими знаниями и эмпиризмом. Так, например, Максвелл в процессе построения теории электромагнетизма не рассматривал непосредственно экспериментальные данные, но использовал теоретические знания предыдущего уровня (закон Био—Савара, который определяет магнитное поле проводника с током, закон индукции Фарадея и др.) в качестве отобранного «эмпирического» материала.
Если мы с этой точки зрения рассмотрим положение, достигнутое в спектроскопии в 1880-х гг. мы увидим, что поиски законов, определяющихся спектральными линиями, были важнейшей проблемой того времени. В таких случаях ситуация приводит к результатам, что часто случается в развитии науки. Различные исследователи пытаются независимо решить одну и ту же проблему и находят одновременно одинаковые решения. Так и было в этом случае. Независимо от Ридберга, в 1890 г. два хорошо известных спектроскописта, Генрих Кайзер (1853—1940) и Карл Рунге (1856—1927), старались установить общие математические уравнения законов спектроскопии и предложили решения, которые горячо обсуждались, пока не стал превалирующим взгляд Ридберга, который и получил всеобщее признание к концу века.
Согласно Ридбергу, аналитическое выражение для спектров должно быть функцией целых чисел. Он стремился узнать, каков должен быть вид этой функции, и нашел одну, в которой обратные волновые числа зависели от обратных квадратов целых чисел. Когда Бальмер опубликовал свою формулу для атома водорода, оказалось, что она соответствует частному случаю выражения Ридберга.
С другой стороны, Кайзер и Рунге искали алгебраическое выражение, которое могло бы предсказать с высокой точностью обратные волновые числа в сериях, и нашли одно, в котором использовались обратные квадраты целых чисел и обратные четвертые степени целого числа. Хотя они и признавали, что Ридберг прав, утверждая, что их выражение просто одно из многих, которые можно выписать, они возражали, что их выражение наиболее точное. Тот факт, что Ридберг утверждал, что его соотношение имеет универсальную значимость для всех атомов, их не интересовал.
Ридберговское представление давало обратную величину длины волны атомного спектра в конкретных сериях в виде разницы между двумя «спектральными термами» (как их позднее стали называть). Каждый из них представляет универсальную константу (позднее названную «константой Ридберга»), деленную на квадрат суммы целого числа и константы, типичной для каждой серии. В этой формулировке был уже представлен «комбинационный принцип», позднее выраженный шведским ученым Вальтером Ритцем (1878-1909).
В то время предполагалось, что световые колебания, представляемые линиями спектра, производятся все вместе в атоме. В конце концов, в 1907 г. Артур Вильям Конвей (1875—1950), профессор математической физики в Дублине, дал правильное объяснение, согласно которому атом производит спектральные линии по одной во времени, так что получение полного спектра происходит от большого числа атомов. Согласно Конвею, испускание спектральной линии атомом должно происходить в ненормальном или возмущенном состоянии. Ситуация, при которой одиночный электрон в атоме стимулируется для получения колебаний с частотой, соответствующей спектральной линии, не продолжается бесконечно, но лишь то время, которое нужно электрону, чтобы испустить цуг колебаний.
Эти идеи были заново высказаны в 1910 г. П. В. Беваном (1875—1913), который также пришел к заключению, что спектральные явления следует объяснять участием большого числа атомов. Они в определенный момент времени находятся в разных состояниях, и каждый из атомов ответственен не за весь спектр, только за одну линию в нем.
«Комбинационный принцип», сформулированный В. Ритцем в 1908 г., был выведен из большого спектроскопического материала. Согласно ему, частоту каждой спектральной линии можно получить как разность между двумя термами — т.н. «спектральных термов», каждый из которых зависит от некоторого целого числа. С помощью этого принципа все линии в сериях можно было классифицировать систематическим образом.
Регулярности, открытые Бальмером в видимом спектре водорода, были обнаружены и в других областях спектра. Теодор Лайман (1874—1954), исследуя излучение водорода в ультрафиолетовой области, нашел в 1906 г., что серии линий, испускаемых в этой области, могут быть представлены формулой, подобной формуле Бальмера. Фридрих Пашен (1865-1947) получил в 1908 г. подобные результаты в инфракрасной области спектра. Позднее эти результаты были подтверждены и дополнены в 1922 г. американским астрономом Фрэнком П. Брэкеттом (1865—1953) и в 1924 г. Августом Г. Пфундом (1879-1948).
Все частоты f различных серий можно выразить универсальной формулой:
с/? = f = const (l/m2 — 1/n2)
где с — скорость света в вакууме; n и m — два целых числа, которые удовлетворяют следующим условиям:
m = 1, n = 2,3,4, … серия Лаймана в УФ;
m =2, n = 3,4,5, ... серия Бальмера в видимой области;
m =3, n = 4,5,6, ... серия Пашена в ИК;
m =4, n = 5,6,7, ... серия Брэкетта в ИК;
m =5, n = 6,7,8, ... серия Пфунда в ИК.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
5. Принцип наименьшего действия
5. Принцип наименьшего действия Уравнения динамики материальной точки в поле сил, обладающих потенциалом, можно получить, исходя из принципа, который в общем виде носит название принципа Гамильтона, или принципа стационарного действия. Согласно этому принципу, из всех
1. Принцип относительности
1. Принцип относительности Прежде чем говорить о развитии наших представлений о квантах, нельзя не посвятить короткую главу теории относительности.Теория относительности и кванты – это два столпа современной теоретической физики, и, хотя эта книга посвящена теории
Глава VII. Принцип соответствия
Глава VII. Принцип соответствия 1. Трудность согласования квантовой теории и теории излучения Электромагнитная теория, дополненная теорией электронов Лоренца, дает совершенно ясную и точную картину излучения, испускаемого системой движущихся зарядов. Если заданы
2. Принцип соответствия Бора
2. Принцип соответствия Бора Сравним набор большого числа фиктивных атомов, которые подчиняются классическим законам, с набором такого же числа реальных квантованных атомов. Если нам известно, как движутся электроны в атомах первого типа, то мы знаем, как вычислить
Принцип неопределенности
Принцип неопределенности До сих пор мы предполагали, что законы сохранения выполняются строго. Мы не сомневались в этом, ибо могли доказать, что если, скажем, энергия или импульс возникли или исчезли даже в очень малых количествах, имели место явления, которые в
Принцип неопределенности и законы сохранения
Принцип неопределенности и законы сохранения В 1930 году на конгрессе физиков в Брюсселе Эйнштейн пытался доказать ошибочность принципа неопределенности. Сделать это ему не удалось. Соображения которые он привел, чтобы доказать несостоятельность принципа
Принцип относительности торжествует
Принцип относительности торжествует Такой опыт и был произведен в 1881 году одним из величайших экспериментаторов прошлого столетия Майкельсоном, который с весьма высокой точностью измерил скорость света в различных направлениях относительно Земли. Чтобы уловить
Принцип Допплера — Белопольского
Принцип Допплера — Белопольского После тщательной подготовки Белопольский осуществил в 1900 году свой замысел. Он поставил сложный опыт и в лабораторных условиях доказал, что при движении источника света длина световых воли действительно изменяется по определенному
Принцип относительности и поиск абсолютного
Принцип относительности и поиск абсолютного Все в мире относительно — гласит самое краткое изложение теории относительности. И самое неправильное. Ведь Эйнштейн положил в основу теории два абсолютных принципа — принцип относительности и принцип постоянства скорости
Принцип эквивалентности
Принцип эквивалентности В предыдущей главе мы отыскали «разумную точку зрения» на движение. Правда, «разумных» точек зрения, которые мы назвали инерциальными системами, оказалось бесконечное множество.Теперь, вооруженные знанием законов движения, мы можем
Принцип исключения[3]
Принцип исключения[3] Несмотря на свои очевидные успехи, в 1924 г. «старая» квантовая теория, которая в течение нескольких предшествующих лет, казалось, дает методы и принципы, способные помочь, по крайней мере, представить основы атомной феноменологии, столкнулась с