§ 8. Импульс силы.
Импульсом силы (или просто импульсом) называют произведение массы тела на его скорость: p = mv (8.1). Иногда вместо «импульс» говорят «количество движения» (мы уже говорили о традиции называть одну величину разными терминами). Возникает вопрос, зачем нужен импульс, если есть энергия? Дело в том, что многие задачи решаются проще при помощи теории, основанной на понятии импульса. Например, оружейникам надо знать скорость отдачи пушки в зависимости от скорости снаряда. Здесь возникает особая проблема. До выстрела скорости пушки и снаряда были равны нулю. После выстрела они разлетаются в разные стороны. Разумеется, полная энергия сохраняется, но как учесть энергию порохового заряда? Мы должны придумать какой-то другой закон, независимый от закона сохранения энергии. Рассмотрим конкретный случай.
Допустим, из корабельной пушки массой 400 кг выстрелили ядром массой 2 кг. Отдача такова, что пушка откатывается назад со скоростью 1 м/с. Скорость пушки изменилась. Кроме того, часть энергии унеслась вместе с ядром. Уравнение (2.4) здесь не поможет, хотя мы уже понимаем, что-то должно сохраняться. Но что? У ядра масса мала, скорость велика. У пушки – наоборот. Кроме того, после выстрела ядро летит в одну сторону, пушка откатывается в противоположную. Что, если сохраняется полный импульс – сумма импульсов ядра и пушки? Если их сумма после выстрела тоже будет равна нулю, значит, полный импульс сохраняется. Для этого нужно знать скорость ядра.
Измерения показали, что дистанцию 400 м до цели ядро пролетело за 2 с. Значит, скорость ядра была 200 м/с. Обозначим импульс ядра после выстрела индексом «я», импульс пушки – индексом «п». Если полный импульс после выстрела тоже равен нулю: ря +рп = 0, то рп = – ря (8.1). Подставляя числа, получаем для ядра: pя = mяvя = 2*200 = 400 кг*м/с (8.2). Тогда для пушки: pп = mпvп = – pя = – 400 кг*м/с (8.3). Ответ получился меньше нуля. Но масса пушки не может быть отрицательной. Допустим, в (8.3) отрицательна скорость: vп = -1 м/с. Проверяем: ря +рп = 400–400 = 0 (8.4). Это значит, что полный импульс сохраняется. Заметим, что полный импульс не обязательно должен быть нулевым.
Теперь при помощи закона сохранения импульса легко вычислить скорость отдачи любого стрелкового оружия.
Пример: Вычислить скорость отдачи автомата Калашникова (АК) при одиночном выстреле. Решение: Масса АК (без магазина) равна 3.6 кг. Скорость пули равна 800 м/с. Массу пули берем классическую, 9 граммов = 0.009 кг. Запишем уравнение сохранения импульса для данного случая: mа*va + mп*vп = 0. Значит, va = – mп*vп / ma (8.5). Подставляя числа, получим: va = – 0.009*800/3.6 = – 7.2/3.6 = – 2 (м/с). Чтобы уменьшить отдачу, рекомендуют плотно прижимать приклад к плечу. Тем самым увеличивается общая масса опоры. Предположим, масса стрелка равна 68.4 кг, вместе с автоматом это будет 68.4 = 3.6 = 72 (кг). Тогда скорость отдачи: 7.2/72 = 0.1 (м/с) или 10 см в секунду, что вполне приемлемо.