§ 4. Превращения энергии
Рассмотрим, как потенциальная энергия переходит в кинетическую при движении тела в поле гравитации. Возьмём уравнение для полной энергии: Е=Ер+Ек. В примере с аэростатом потенциальная энергия баллона в начале опыта была равна Ep = mgh, а кинетическая равна нулю (v=0). После того, как баллон упал на землю, его потенциальная энергия стала равна нулю, так как h=0. Зато в момент падения кинетическая энергия баллона стала максимальной: Ек = mv2/2. Таким образом, при падении в поле гравитации потенциальная энергия тела превращается в кинетическую энергию в соответствии с законом сохранения энергии. Заметим, что на высоте s=h/2 потенциальная энергия mgs падающего баллона в точности равна половине полной энергии mgh. Значит, на высоте s потенциальная энергия Ерs равна кинетической энергии Екs. Тогда мы можем написать: Е/2 = Ек, или Е/2 = mv2/2, или Fs = mv2 (4.1). Если на высоте s скорость v приравнять к s/t (средняя скорость на пути от высоты h до высоты s), мы можем записать уравнение (4.1) в виде Fs = ms2/t2. Сокращая на s, получаем: F = ms/t2 (4.2).
Выражение s/t2 есть не что иное, как ускорение из (2.1): а = s/t2 (4.3). Подставляя (4.3) в (4.2) получим в итоге уравнение: F = ma (4.4).
Уравнение (4.4), которое позволяет вычислить силу F, нужную для придания ускорения a телу с массой m, называют вторым законом Ньютона.
К примеру, если у новогодней шутихи масса равна 0.2 кг и она взлетает в небо с ускорением 5 м/с2, это значит, что сила тяги ракеты равна: F = 0.2*5=1 (Н).
В стандартном учебнике уравнение (4.4) дают в готовом виде. Считается, что оно получено опытным путём. Мы вывели уравнение (4.4) из закона сохранения энергии (2.4), который, тоже является обобщением опытных данных.