Запуск частиц в обратном направлении

Элементарные частицы не слишком-то хорошо соблюдают постулаты классической механики: они живут по правилам квантовой механики. Тем не менее основополагающий принцип остается неизменным: существуют такие преобразования, что после изменения направления времени на обратное и применения этих трансформаций мы все так же получаем верное решение в исходной теории. Часто можно услышать, что элементарные частицы не инвариантны относительно отражения времени, и периодически высказываются даже не слишком тонкие намеки на то, что это связано со стрелой времени. Но это ложный след. Поведение элементарных частиц в условиях «обратного» времени никакого отношения к стреле времени не имеет, что, однако, вовсе не делает ее менее интересным объектом для исследований.

Давайте попробуем вообразить эксперимент, позволяющий понять, действительно ли физика элементарных частиц инвариантна относительно обращения времени. Для этого нам нужно взять какой-либо процесс, включающий элементарные частицы, и прокрутить его в обратном направлении. Например, две частицы могут взаимодействовать друг с другом с образованием других частиц (как в ускорителе), или же одна частица может распадаться на несколько других. Если продолжительность «прямого» процесса будет отличаться от продолжительности «обратного», это станет доказательством отсутствия инвариантности.

Атомные ядра состоят из нейтронов и протонов, которые в свою очередь состоят из кварков. Нейтроны остаются стабильными только в окружении протонов и других нейтронов, образующих ядро, а оказавшись в одиночестве, они распадаются в течение нескольких минут (будучи частицами с тонкой душевной организацией, они не могут жить без внимания окружающих). Нейтрон распадается на комбинацию из протона, электрона и нейтрино (очень легкая нейтральная частица).[121] С теоретической точки зрения нет ничего сложного в том, чтобы сконструировать обратный процесс: нужно всего лишь выстрелить протоном, электроном и нейтрино в одну точку на правильной скорости и дождаться результата. Проблема, однако, состоит в том, что даже если подобное взаимодействие и позволило бы получить какие-нибудь новые интересные знания об обращении времени, реализовать это на практике невозможно. Никому не под силу поместить протон, электрон и нейтрино в такие положения и заставить вести себя так, чтобы полностью воспроизвести картину распада нейтрона в обратном направлении.

Рис. 7.8. Нейтральный каон и нейтральный антикаон. Поскольку оба обладают нулевым электрическим зарядом и суммарное кварковое число в них также равно нулю, каон и антикаон могут осциллировать друг в друга, оставаясь при этом разными частицами

Однако не всегда все так печально. В физике элементарных частиц встречаются специфические случаи, когда одиночная частица «распадается» в другую одиночную частицу, которая затем также может «распасться» обратно в исходную. В действительности это, конечно, нельзя называть распадом, поскольку в процесс вовлечена только одна частица. Такие процессы называются осцилляциями. Очевидно, что осцилляции могут происходить только в весьма специфических обстоятельствах. Например, протон не может осциллировать в нейтрон: их электрические заряды отличаются. Две частицы могут осциллировать друг в друга только в том случае, если они обладают одинаковым электрическим зарядом, одинаковым числом кварков и одинаковой массой, так как при осцилляции не может исчезать или увеличиваться энергия. Обратите внимание на то, что кварк и антикварк — это не одно и то же, и, следовательно, нейтроны не будут осциллировать в антинейтроны. В сущности, нас интересуют две практически одинаковые частицы, различия между которыми минимальны.

Природа предоставляет нам идеального кандидата для таких осцилляций: нейтральный каон. Каон относится к типу мезонов, и это означает, что он состоит из одного кварка и одного антикварка. Если мы хотим, чтобы частица состояла из кварков разных типов с нулевым суммарным зарядом, то проще всего сделать ее из одного нижнего (d)-кварка и одного странного (s) антикварка, или наоборот.[122] Систему из нижнего кварка и странного антикварка принято называть «нейтральным каоном», а систему из странного кварка и нижнего антикварка — «нейтральным антикаоном». Массы этих частиц абсолютно одинаковы и составляют около половины массы протона или нейтрона. Вполне естественно ожидать, что между каонами и антикаонами возникают осцилляции, и действительно: изучение осцилляций именно этих частиц стало уже чем-то вроде промышленной отрасли в экспериментальной физике элементарных частиц. (Существуют также каоны, обладающие электрическим зарядом. Такой каон состоит из верхнего (u) кварка и странного кварка и для наших целей совершенно бесполезен. Даже если в дальнейшем обсуждении для простоты формулировок мы будем опускать слово «нейтральный», говорить мы все же будем именно о нейтральных каонах.)

Итак, нам нужно сделать несколько каонов и антикаонов, чтобы понаблюдать, как они будут осциллировать друг в друга. Если инвариантность относительно отражения времени отсутствует, то в одну сторону процесс будет идти дольше, чем в другую; в результате в нашем наборе частиц будет в среднем немного больше каонов, чем антикаонов (или наоборот). К сожалению, на самих частицах мы не найдем маленьких меточек, сообщающих, с каким типом каонов мы имеем дело. Зато в конечном счете они полностью распадутся и образуют совершенно новые частицы: каон распадается на пион с отрицательным зарядом, антиэлектрон и нейтрино, а антикаон — на пион с положительным зарядом, электрон и антинейтрино. Если оценить, насколько часто один тип распада происходит по сравнению с другим, то можно понять, в какой форме первоначальные частицы пребывали дольше — в форме каона или антикаона.

Несмотря на то что теоретические предсказания были получены уже достаточно давно, соответствующий эксперимент CPLEAR провели в лаборатории CERN в Женеве (Швейцария) лишь в 1998 году.[123] Ученые обнаружили, что создаваемый ими пучок частиц, совершающий осцилляции между каонами и антикаонами, немного чаще (примерно на две трети процента) распадался как каон, чем как антикаон, то есть частицы в осциллирующем пучке чуть дольше пребывали в состоянии каонов, чем антикаонов. Другими словами, процесс превращения каона в антикаон занимал немного больше времени, чем обратный процесс перехода антикаона в каон. Таким образом, в реальном мире направление времени в физике элементарных частиц не симметрично.

По крайней мере, это справедливо для «бесхитростного» обращения времени, как мы определили его выше. Можно ли в мире элементарных частиц использовать какие-либо дополнительные преобразования, чтобы в результате добиться инвариантности относительно обращения времени? Ответ положительный, и сейчас мы обсудим это подробнее.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК