Наши горячие, однородные первые дни
Если думать о Вселенной как о физической системе случайным образом выбранной конфигурации, то ответ на вопрос «Как должна выглядеть Вселенная?» будет следующим: «Она должна находиться в высокоэнтропийном состоянии». Таким образом, нам необходимо понять, как выглядит высокоэнтропийное состояние Вселенной.
Даже такая формулировка вопроса не совсем верна. В действительности нас не интересует конкретное состояние Вселенной прямо сейчас, в этот момент. В конце концов, оно было другим вчера, а завтра снова изменится. Нам интересна история Вселенной, ее эволюция с течением времени. Но для понимания того, что такое естественная история, нам необходимо знать что-то о пространстве состояний, в том числе о том, на что похожи высокоэнтропийные состояния.
Космологи традиционно обходят этот вопрос стороной, и этому есть две причины. Первая заключается в том, что расширение Вселенной из горячего, плотного начального состояния — это такой неоспоримый факт, что, привыкнув к данной идее, вы начинаете испытывать трудности с тем, чтобы вообразить другие альтернативы. Своей задачей как космолога-теоретика вы начинаете считать поиск объяснения, почему Вселенная родилась именно в этом конкретном горячем и плотном состоянии, а не в каком-то другом горячем и плотном состоянии. Это временной шовинизм — самый опасный тип шовинизма. Вы бездумно подменяете вопрос «Почему Вселенная эволюционирует именно так, как она эволюционирует?» вопросом «Почему исходное состояние Вселенной было именно таким, каким оно было?».
Вторая причина, не позволяющая эффективно изучать пространство состояний Вселенной, — это неизбежное влияние гравитации. Под «гравитацией» мы подразумеваем все относящееся к общей теории относительности и к искривленному пространству—времени: как повседневные явления, такие как падающие яблоки и планеты, вращающиеся вокруг звезд, так и черные дыры и расширение Вселенной. В предыдущей главе мы детально рассмотрели один пример, а именно черную дыру — объект с сильным гравитационным полем и известной, как нам кажется, энтропией. На первый взгляд он не кажется хорошей подмогой в попытках разобраться со всей Вселенной, которая на черную дыру совсем не похожа. Скорее, она напоминает белую дыру (так как в прошлом у нее существует сингулярность), но даже это слабо нам помогает, поскольку мы находимся внутри Вселенной, а не снаружи. Определенно, гравитация играет важную роль во Вселенной, и это особенно верно для периода ее зарождения, когда пространство расширялось очень быстро. Однако понимание важности проблемы не всегда помогает в ее решении, поэтому большинство людей просто отбрасывают любые мысли о ней.
Существует и другая стратегия, с первого взгляда кажущаяся невинной, но потенциально скрывающая внутри себя грандиозную ошибку. Суть ее в том, чтобы просто-напросто отделить гравитацию от всего остального и вычислять энтропию материи и излучения внутри пространства—времени, отбрасывая энтропию самого пространства—времени. Разумеется, трудно быть космологом и игнорировать тот факт, что пространство расширяется; тем не менее расширение можно принимать как данность и попросту рассматривать состояние «вещества» (частиц обычной материи, темной материи, излучения) на этом фоне. Расширяясь, Вселенная разреживает материю и остужает излучение — словно частицы содержатся в камере с поршнем, который мы постепенно вытягиваем, обеспечивая им больше пространства для существования. Согласившись с такой картиной, энтропию вещества на таком фоне можно вычислить точно так же, как энтропию набора молекул в камере с движущимся наружу поршнем.
В любой момент ранняя Вселенная содержит газ частиц при практически постоянной температуре и практически постоянной плотности, которые не зависят от выбранной точки пространства. Другими словами, ее конфигурация очень похожа на термодинамическое равновесие. Конечно, это не идеальное состояние равновесия, в котором ничего не меняется: в расширяющейся Вселенной все охлаждается и разреживается. Но по сравнению с частотой столкновения частиц расширение пространства происходит относительно медленно, поэтому охлаждение происходит плавно. Если мы рассмотрим только материю и излучение ранней Вселенной, отбросив любое влияние гравитации за исключением общего расширения, то увидим последовательность конфигураций, очень близких к тепловому равновесию, но с постепенно уменьшающимися плотностью и температурой.[240]
Однако это, разумеется, ужасающе неполная история. Второе начало термодинамики гласит: «Энтропия замкнутой системы либо увеличивается, либо остается постоянной»; оно не утверждает: «Энтропия замкнутой системы, если не учитывать гравитацию, либо возрастает, либо остается постоянной». Ничто в законах физики не позволяет нам игнорировать гравитацию в случаях, когда она важна, — а в космологии она имеет первостепенное значение.
Отбрасывая воздействие, которое гравитация оказывает на энтропию, и принимая во внимание исключительно материю и излучение, мы приходим к полным абсурда выводам. Материя и излучение ранней Вселенной были близки к тепловому равновесию, что означает (если пренебречь гравитацией), что это было состояние Вселенной с максимальной энтропией. Но сегодня, в поздней Вселенной, мы совершенно очевидно не находимся в термодинамическом равновесии (если бы это было так, то нас не окружало бы ничего, кроме газа при постоянной температуре), то есть не может быть сомнений, что окружающая нас конфигурация — это не конфигурация с максимальной энтропией. Однако энтропия не могла уменьшиться, ведь это было бы нарушением второго закона термодинамики. Что же происходит?
А происходит вот что: игнорировать гравитацию неправильно. К сожалению, учесть ее во всех расчетах совсем не так просто; к тому же мы до сих пор очень многого не знаем о поведении энтропии при условии гравитационного взаимодействия. Тем не менее, как мы увидим далее, нам известно достаточно, чтобы не только сдвинуться с мертвой точки в исследованиях, но и добиться значительного успеха.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК