Испарение

Для того чтобы полностью разобраться, каким образом Хокинг пришел к этому потрясающему результату — пониманию того, что черные дыры излучают, — необходимо провести тщательный математический анализ поведения квантовых полей в искривленном пространстве. Однако существует также популярное объяснение «на пальцах», и оно содержит достаточно ценной истины, чтобы на него могли опираться все люди мира, включая Хокинга. Так почему бы нам не последовать их примеру?

Основная мысль состоит в том, что квантовая теория поля подразумевает существование «виртуальных частиц» в дополнение к старым добрым реальным частицам. Мы мимоходом упомянули об этой идее в главе 3, когда обсуждали энергию вакуума. Казалось бы, самую низкую энергию квантовое поле должно иметь в состоянии, когда оно абсолютно постоянно, то есть просто существует в неизменном виде, не меняясь от точки к точке или от одного момента времени к другому. Если бы речь шла о классическом поле, все так и было бы, но как в квантовой механике невозможно привязать частицу к одному конкретному положению, так и в квантовой теории поля нельзя привязать поле к одной конкретной конфигурации. Значение квантового поля всегда будет содержать какие-то неопределенности и нечеткость — это неотъемлемое его свойство. Это присущее квантовым полям дрожание можно относить на счет появления и исчезновения частиц — по одной частице и одной античастице за раз, причем происходит это так стремительно, что мы просто не успеваем их заметить. Такие виртуальные частицы невозможно засечь напрямую; если мы видим частицу, то точно знаем, что это реальная, а не виртуальная частица. Однако виртуальные частицы могут взаимодействовать с реальными (не виртуальными), едва ощутимо изменяя их свойства, и это воздействие можно пронаблюдать и изучить в мельчайших деталях. Виртуальные частицы действительно существуют.

Одним из важнейших выводов Хокинга было то, что гравитационное поле черной дыры способно превращать виртуальные частицы в реальные. Обычно виртуальные частицы появляются парами: одна частица и одна античастица.[226] Они возникают, существуют на протяжении кратчайшего времени, а затем аннигилируют, пока никто не заметил. Но благодаря наличию горизонта событий черная дыра все меняет. Когда пара из виртуальной частицы и античастицы образуется очень близко к горизонту, одна из частиц может упасть под горизонт, и, очевидно, у нее не останется других вариантов, кроме как продолжать падение в сингулярность. Тем временем другая частица сможет убежать на бесконечность. Горизонт событий разорвал виртуальную пару, поглотив одну из частиц. А убежавшая частица стала частью хокинговского излучения.

Теперь на сцену выходит важнейшее свойство виртуальных частиц: их энергия может быть вообще какой угодно. Общая энергия пары из виртуальной частицы и античастицы в точности равна нулю — это необходимое условие, так как они должны уметь появляться из вакуума и растворяться в нем. Энергия реальных частиц равна произведению массы на квадрат скорости света, когда частица находится в покое, а с началом движения частицы возрастает; следовательно, энергия никогда не может быть отрицательной. Таким образом, если у реальной частицы, убежавшей от черной дыры, положительная энергия, а общая энергия исходной виртуальной пары была нулевой, значит, у частицы, упавшей в черную дыру, энергия отрицательная. И когда эта частица падает, общая масса черной дыры уменьшается.

В конце концов, если она не получит какую-то дополнительную энергию из других источников, черная дыра полностью испарится. Оказывается, черные дыры нельзя считать областями, где время обрывается раз и навсегда; это объекты, которые успевают просуществовать в течение какого-то периода времени, прежде чем окончательно исчезнуть. В каком-то смысле хокинговское излучение сделало черные дыры намного более приземленными, чем они казались в классической общей теории относительности.

Рис. 12.4. Хокинговское излучение. В квантовой теории поля виртуальные частицы и античастицы постоянно образуются из вакуума и исчезают в вакууме. Однако поблизости от черной дыры одна из пары частиц может провалиться под горизонт событий, а другая — убежать во внешний мир в форме хокинговского излучения

Хокинговское излучение обладает интересным свойством: чем меньше черная дыра, тем она горячее. Температура пропорциональна поверхностной гравитации, которая тем больше, чем менее массивную черную дыру мы рассматриваем. У тех типов астрофизических черных дыр, о которых мы говорим в этой главе (с массой, равной массе Солнца или намного ее превышающей), очень низкие хокинговские температуры; во Вселенной в ее текущем состоянии такие черные дыры вообще не испаряются, так как забирают намного больше энергии у окружающих объектов, чем теряют посредством хокинговского излучения. Ситуация не поменялась бы, даже если бы единственным внешним источником излучения был космический микроволновый фон с температурой около 3 кельвинов. Для того чтобы черная дыра имела температуру выше, чем сегодняшняя температура космического микроволнового фона, ее масса должна составлять менее 1014 килограммов — приблизительно столько весит гора Эверест, а это намного меньше, чем у любой известной нам черной дыры.[227] Разумеется, фоновое микроволновое излучение становится все холоднее по мере расширения Вселенной, так что если подождать достаточно долго, черные дыры станут теплее окружающей Вселенной и начнут терять массу. В ходе этого процесса они будут нагреваться и терять массу еще быстрее; процесс выйдет из-под контроля, и как только черные дыры съежатся до критического размера, их быстрый конец наступит в форме эффектных взрывов.

К сожалению, численная величина ожидаемого эффекта не позволяет Стивену Хокингу получить Нобелевскую премию за предсказание существования излучения из черных дыр. Если говорить о типах черных дыр, известных нам сегодня, то излучение из них слишком ничтожно, чтобы его можно было засечь в обсерватории. Возможно, нам повезет, и когда-нибудь мы обнаружим чрезвычайно маленькую черную дыру, испускающую высокоэнергетическое излучение, но шансы невелики.[228] А Нобелевская премия вручается за эффекты, которые можно реально пронаблюдать уже сейчас, а не просто за отличные идеи. И все же авторы отличных идей не остаются без вознаграждения.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК