Первые шаги к петлям
Туман начал рассеиваться к концу 1980-х годов. Неожиданно появились некоторые решения уравнения Уилера – Девитта. В эти годы мне довелось встретиться в Сиракузском университете (штат Нью-Йорк) с индийским физиком Абэйем Аштекаром, а затем в Йельском университете с физиком Ли Смолином. Этот период запомнился мне интенсивными дискуссиями и жгучим интеллектуальным задором. Аштекар переписал уравнение Уилера – Девитта в более простой форме; Смолин совместно с Тедом Якобсоном из Мэрилендского университета в Вашингтоне был первым, кто нашел новые странные решения этого уравнения.
У этих решений была одна любопытная особенность: они зависели от замкнутых линий в пространстве. Замкнутая линия – это петля. Смолин и Якобсон смогли найти решение уравнения Уилера – Девитта для любой петли, то есть для любого замкнутого контура. Какое значение это имело? Первые работы в области, которая в дальнейшем стала называться петлевой квантовой гравитацией, появились из дискуссий, в ходе которых постепенно прояснялся смысл решений уравнения Уилера – Девитта. На этих решениях шаг за шагом стала воздвигаться целостная теория, унаследовавшая название «петлевая теория» от первых изученных решений.
Сегодня над этой теорией работают сотни исследователей, разбросанных по всему миру – от Китая до Аргентины, от Индонезии до США. То, что было постепенно выстроено, называется теперь петлевой теорией, или петлевой квантовой гравитацией, – ей посвящены следующие главы. Это не единственное направление, исследуемое в поисках квантовой теории гравитации, но я считаю его самым многообещающим[94].