Температура расширяющейся Вселенной

We use cookies. Read the Privacy and Cookie Policy

Прежде чем мы углубимся в детали ядерной физики Большого взрыва, стоит выяснить, какие виды энергии действовали на разных этапах истории Вселенной, поскольку они имеют отношение не только к ядерной физике, но и к физике в целом на каждом этапе.

Хотя Вселенная расширяется очень быстро, частицы, существовавшие на ранних стадиях ее развития, взаимодействовали еще быстрее, так что их тепловое замедление все еще обеспечивало им состояние квазиравновесия. Это значит, что частицы можно описать как имеющие абсолютную температуру Г, которая тем не менее снижается по мере расширения Вселенной.

Большинство авторов, пишущих на эту тему, дают значения температуры на разных стадиях в Кельвинах, вероятно, потому, что считают, что читатель лучше знаком с этими единицами измерения. Однако истинные значения температуры на ранних этапах жизни Вселенной столь высоки, что для нас они не имеют никакого практического смысла.

Более информативны значения средней кинетической энергии частиц во Вселенной в каждый заданный момент времени, которые с точностью, достаточной для наших целей, задаются формулой K = kBT, где kB — постоянная Больцмана. То есть температура тела — это просто средняя кинетическая энергия частиц этого тела. Поскольку kB — это произвольная постоянная, которая просто переводит кельвины в единицы измерения энергии, можно принять kB = 1 и измерять температуру в единицах измерения энергии.

Когда мы имеем дело с атомными, ядерными и субъядерными процессами, самой удобной единицей измерения энергии является электрон-вольт (эВ), который равен кинетической энергии, приобретаемой электроном при прохождении разности электрических потенциалов 1 В. Атомные процессы характеризуются энергией в несколько электрон-вольт или килоэлектрон-вольт (кэВ), где 1 кэВ = 1000 эВ. Ядерные процессы протекают с энергией порядка мегаэлектрон-вольт (МэВ), где 1 МэВ = 1000 000 эВ. Для субъядерных процессов характерна энергия порядка гигаэлектрон-вольт (ГэВ) и тераэлектрон-вольт (ТэВ), где 1 ГэВ = 1 млрд. эВ (109) и 1 ТэВ = 1 трлн эВ (1012).

Стоит отметить, что ускорители на встречных пучках позволяют нам изучать физику самых первых мгновений существования Вселенной. К примеру, когда общую энергию Большого адронного коллайдера (БАК) доведут до 14 ТэВ (что произойдет в 2015 году), это позволит физикам оценить свойства материи, существовавшей через 10-15 с после Большого взрыва, когда температура была именно настолько высока.

На рис. 10.2 показана средняя кинетическая энергия Вселенной от 10™” с существования Вселенной, планковского времени, до настоящего момента. Позже нам нужно будет подробнее поговорить о планковском времени и о том, что могло быть до него. Но пока что начнем историю с этого момента.

Рис. 10.2. Средняя кинетическая энергия частиц во Вселенной в зависимости от времени, прошедшего с момента Большого взрыва. График построен в логарифмическом масштабе по обеим осям. Его также можно рассматривать как график абсолютной температуры в зависимости от времени с температурой, выраженной в электрон-вольтах. Авторская иллюстрация

Около 380 000 лет после Большого взрыва все частицы во Вселенной находились в квазиравновесном состоянии и имели одну и ту же температуру, снижающуюся по мере расширения и охлаждения Вселенной. В это время, называемое моментом последнего рассеяния, атомы вышли из равновесного состояния, тогда как фотоны и нейтрино все еще сохраняли квазиравновесие. График в логарифмическом масштабе не должен вас обманывать. Время, прошедшее между моментом последнего рассеяния и сегодняшним днем, исходя из практических соображений, все еще можно считать равным 13,8 млрд. лет.

По мере расширения и охлаждения Вселенной разные виды частиц постепенно выходили из состояния равновесия. Позвольте продемонстрировать это на примере антипротонов. Они сталкиваются с протонами и распадаются на фотоны и другие, более легкие частицы. Рассмотрим аннигиляцию с образованием фотонов. Реакция выглядит так:

p + p- ? ? + ?,

где p- — антипротон, ? — фотон. Фотоны забирают энергию покоя протона и антипротона, а также их исходную кинетическую энергию, какой бы она ни была. Также может произойти обратная реакция, при которой вновь образуются антипротоны:

? + ? ? p + p-.

Однако, поскольку энергия покоя фотонов равна нулю, их общая кинетическая энергия должна равняться по меньшей мере общей энергии покоя протона и антипротона, то есть 1876 МэВ. Итак, пока температура Вселенной превышает это значение, антипротоны и протоны будут находиться в состоянии равновесия, при этом их количество будет примерно одинаковым. Но когда температура Вселенной опустилась ниже 1876 МэВ, что произошло спустя примерно 10–7 с после ее рождения, энергии фотонов стало недостаточно, чтобы создавать пары «протон — антипротон» и количество последних стало постепенно уменьшаться.

Теперь возникает небольшая асимметрия между количеством материи и антиматерии (подробнее мы поговорим об этом в главе 11), так что, когда все антипротоны аннигилируют, остается излишек протонов. Их количество составляет один протон на миллиард фотонов, электронов, позитронов и нейтрино. Если бы не эта асимметрия, все протоны аннигилировали бы и не осталось бы строительного материала для атомов, звезд, планет, а также меня и вас.

Так же как антипротоны исчезли из ранней Вселенной, когда температура упала ниже значения, необходимого для того, чтобы их восстановить, исчезли и позитроны, когда Вселенная еще немного остыла. Давайте рассмотрим аналогичный процесс, в котором электронная пара аннигилирует с возникновением фотонов:

е+ + е- ? ? + ?

Чтобы позитроны возникли снова, должна произойти обратная реакция:

? + ? ? е+ + е-.

Общая энергия фотонов в этой реакции должна равняться по меньшей мере общей энергии покоя позитрона и электрона, то есть 1,022 МэВ. Когда температура Вселенной опустилась ниже этого значения, что произошло спустя примерно 0,15 с после Большого взрыва, энергии фотонов стало недостаточно, чтобы создавать электронные пары, и позитроны аннигилировали. Как и в случае с протонами, из-за асимметрии между частицами и античастицами остался один электрон на миллиард. В конечном итоге, но не в следующие 380 000 лет эти электроны объединились с протонами, образовав атомы водорода. Однако прежде, чем это произойдет, должны сформироваться ядра атомов.