Переходя на сторону победителей

We use cookies. Read the Privacy and Cookie Policy

Еще до объявления результатов СОВЕ исследовательские группы со всего мира поспешили примкнуть к побеждающей стороне, к тому, что было признано одной из величайших научных возможностей, существовавших когда-либо, — возможности оглянуться назад, на первые моменты жизни Вселенной. На своем веб-сайте Lambda, посвященном исследованиям реликтового излучения, НАСА перечисляет 20 экспериментов, которые проводились на протяжении 1990-х годов с использованием либо наземных телескопов, либо высотных аэростатов, разработанных специально для измерения анизотропии{285}.

Большинство этих приборов имели большую угловую разрешающую способность, нежели была у обсерватории СОВЕ (7°), хотя с их помощью и нельзя было получить такое же количество данных, как с помощью орбитального спутника. Канадский телескоп SK, установленный в городе Саскатуне, провинция Саскачеван, имеет угловую разрешающую способность 0,2–2° в шестичастотных полосах между 26 и 46 ГГц, покрывая таким образом диапазон значений l от 54 до 404{286}.

Еще большее впечатление производит Австралийский компактный массив радиотелескопов (Australia Telescope Compact Array, ATCA), состоящий из пяти антенн диаметром 22 м каждая, расположенных на расстоянии 30,6 м друг от друга в направлении с востока на запад. Угловая разрешающая способность этого массива составляет впечатляющие 2' (угловые минуты) (0,03°) при частоте 8,7 ГГц, и он покрывает значения l от 3350 до 6050{287}. Результаты этих экспериментов дали первые намеки на то, что нам еще многое предстоит узнать о РИ, в частности, что при меньших углах его спектр не плоский.

Хотя теперь быстрее всего было бы перейти к последним результатам, в этой и следующей главах я собираюсь представить в хронологической последовательности серию графиков все увеличивающейся точности, для того чтобы продемонстрировать, как работает наука, и для того, чтобы отдать дань уважения первопроходцам этого впечатляющего пути новых научных открытий.

На рис. 13.5 изображен угловой спектр вплоть до l = 1000, полученный в результате 17 экспериментов, по состоянию на 1998 год. На этом графике можно увидеть первые (существенные) акустические пики.

Рис. 13.5. Обобщенные данные по угловой анизотропии РИ по состоянию на 1998 год. Изображение из работы: HancockS. et al. Constraints on Cosmological Parameters from Recent Measurements of Cosmic Microwave Background Anisotropy // Monthly Notices of the Royal Astronomical Society, 294, 1998. — № 1 (February 11): L1-L6. Использовано с согласия издательства Оксфордского университета 

В тот же период проводились два выдающихся эксперимента, BOOMERANG и MAXIMA, с использованием высотных аэростатов. Собранные при этом данные позволили значительно усовершенствовать график спектральной плотности. Об этих результатах, а также о работе еще более впечатляющего аппарата под названием «Микроволновый анизотропный анализатор Уилкинсона» (Wilkinson Microwave Anisotropy Probe, WMAP) и о космической обсерватории «Планк» мы поговорим в следующей главе.

Итак, в конце второго тысячелетия нашей эры мы получили убедительные свидетельства в пользу того, что в первые моменты жизни нашей Вселенной происходило экспоненциальное расширение, называемой инфляцией, которое завершилось примерно на 10-32 доле секунды. Спустя несколько миллиардов лет более спокойного расширения наша Вселенная снова начала раздуваться экспоненциально, хотя и со значительно меньшей скоростью, и это, вероятно, будет продолжаться вечно. В какой-то момент далеко в будущем обитатели планеты, все еще согреваемой Солнцем, не смогут увидеть во Вселенной ничего, кроме Млечного Пути и гало галактики Андромеда, когда две эти галактики сольются, поскольку все остальное будет находиться за пределами видимости.