Электромагнетизм
Второе важнейшее достижение физики XIX века заключалось в том, что электричество и магнетизм стали считаться базовыми силами природы наряду с уже известной гравитацией. Снова перед нами предстает совместная работа теоретиков и экспериментаторов, в этом случае увенчавшаяся системой уравнений, созданной шотландским физиком Джеймсом Клерком Максвеллом в 1865 году. В уравнениях Максвелла объединился ряд принципов, открытых другими учеными:
? закон электромагнитной индукции, который открыл опытным путем Майкл Фарадей (1791–1867). Он продемонстрировал, как магнитное поле, изменяющееся во времени, порождает электрическое поле;
? закон Ампера, который экспериментально открыл Андре Мари Ампер (1775–1836). Этот закон описывает, как магнитное поле порождается электрическим током. Электрический ток представляет собой просто движущийся заряд;
? закон Гаусса — теорема, предложенная Иоганном Карлом Фридрихом Гауссом (1777–1855). Этот закон показывает, как электрическое поле, образованное на замкнутой поверхности, зависит от электрического заряда, находящегося внутри этой поверхности. Заметьте, что если сила электрического взаимодействия вызвана статическим зарядом, а сила магнитного взаимодействия — движущимся зарядом, то с точки зрения принципа относительности Галилея они должны быть равны. Локализация каждого из них зависит от системы отсчета наблюдателя. Это принципиально важный момент, редко упоминающийся в учебниках и на занятиях по физике.
С точки зрения физики поле — это математический объект, имеющий значение в каждой точке пространства. Если это значение может быть выражено одним числом, как в случае плотности или давления жидкостей, газов и твердых тел, то такое поле называется скалярным. Оно может быть выражено также системой чисел. Ньютоновское гравитационное поле, электрическое и магнитное поля — векторные, требующие трех чисел для определения каждой точки в пространстве: одно выражает абсолютное значение величины, а два других — направление распространения поля. Гравитационное поле в общей теории относительности Эйнштейна — это тензорное поле, определяющееся десятью независимыми числами.
Ранее Фарадей и Ампер продемонстрировали, что электричество и магнетизм представляют собой одно и то же явление, объединив тем самым две силы, до того рассматривавшиеся по отдельности. Уравнения Максвелла систематизировали эти новые данные. Теория Максвелла содержит полное описание классического электромагнитного поля. Уравнения Максвелла применимы для любых вариантов распространения электрических зарядов и токов в любой среде. С их помощью можно рассчитать электрическое и магнитное поля в любой точке пространства или материальной среды. Добавив всего одно уравнение, предложенное Хендриком Лоренцем (1853–1928), можно определить силу электрического или магнитного взаимодействия заряженных частиц в любой точке электрического поля и с помощью ньютоновской механики предсказать местоположение и скорость этой частицы в любой момент в будущем (или в прошлом, если уж на то пошло). Вот еще один довод в пользу концепции ньютоновской мировой машины.
Как бы это ни впечатляло, еще более ошеломляющим следствием из уравнений Максвелла стало то, что, согласно основанным на них прогнозам, электромагнитное поле может присутствовать в пустом пространстве в отсутствие каких-либо электрических зарядов и токов. Более того, это поле будет распространяться в пространстве подобно волне, со скоростью, точно равной скорости света в вакууме. Это значение не было заложено в модель, его вывели математическим путем. Так ученые сделали вывод, что свет представляет собой электромагнитное излучение, подтвердив тем самым его волновую природу.
Еще одно следствие теории Максвелла заключалось в том, что границы электромагнитного спектра до неизвестной степени шире его видимой части, которая охватывает излучение с длиной волны от 430 нм (фиолетовый свет) до 700 нм (красный свет) как в коротко-, так и в длинноволновую сторону. Ниже фиолетовой части спектра находится ультрафиолетовое излучение, а выше красной — инфракрасное. Перед ультрафиолетовым излучением расположено рентгеновское, а до него — гамма-излучение. За инфракрасным излучением в спектре располагаются радиоволны. В 1887 году немецкий физик Генрих Герц (1857–1894) отправил электромагнитный сигнал с длиной волны 8 м, которая в 1 млрд. раз длиннее волн видимого спектра, и определил, что это излучение также движется со скоростью света.
Современная астрономия имеет дело с электромагнитным диапазоном от гамма-лучей с длиной волны всего лишь 10-18 м (мне доводилось участвовать в наблюдении гамма-излучения) до радиоволн с длиной волны несколько километров.
Длина световой волны обычно обозначается греческой буквой ?. Эта величина представляет собой расстояние между двумя соседними гребнями волны. Частота волны f — это скорость, с которой гребни волны проходят через заданную точку. Для световых волн f? = c, где c — это скорость распространения света в вакууме. Это выражение справедливо для волн вообще, в таком случае с обозначает скорость распространения волны.