Легкие ядра

We use cookies. Read the Privacy and Cookie Policy

Ядро He4 было не единственным легким ядром, сформировавшимся во время Большого взрыва. На самом деле возникло значительное количество ядер H2 (дейтронов), H3 (тритонов) и Не3, а также немного Li7, Be7 и Li6. В 70-х годах XX века Шрамм и его все более многочисленные сторонники среди физиков-ядерщиков и астрофизиков начали напряженную работу по вычислению первичной распространенности легких элементов, сравнивая ее с данными наблюдений. Они обнаружили, что данные заметно согласуются. Работа продолжается по сей день, и ученые добились особенных успехов в этой области благодаря сопутствующим невероятным достижениям в области наблюдений{199}.

Чтобы образовались ядра, нужны нейтроны. Нейтрон массивнее протона на 0,782 МэВ и образуется путем слабого взаимодействия:

e- + p ? ?e + n

?-e + p ? e+ + n,

где ?e и ?-e — электронное нейтрино и электронное антинейтрино соответственно. Слабые взаимодействия, а также нейтрино и другие фундаментальные частицы мы рассмотрим в следующей главе. Заметьте, двойные стрелки указывают на то, что эти реакции обратимые.

Поскольку полная масса (энергия покоя) с правой стороны реакции больше, чем с левой, на 0,271 МэВ и 1,293 МэВ соответственно, образование нейтронов в обеих реакциях прекратилось, когда средняя кинетическая энергия Вселенной упала ниже этих значений. Вначале, примерно через 0,1 с, прекратилась вторая реакция, с большей разницей энергии, в то время как первая реакция продолжала производить нейтроны вплоть до 2 с после Большого взрыва. После этого количество нейтронов сократилось примерно до 1/6 числа протонов, поскольку в ходе бета-распада они стали превращаться в протоны:

n ? p + e- + ?e.

Среднее время существования нейтрона примерно 880 с, точное значение все еще под вопросом. Первичный нуклеосинтез очень сильно зависит от этого числа.

Теперь, когда температура опустилась ниже 1 МэВ, могут образоваться ядра, поскольку их больше не будут мгновенно разрывать множество высокоэнергетических фотонов, кишащих вокруг. К этому моменту, как уже было сказано, все позитроны аннигилировали, так что нейтрино (и антинейтрино) больше нечего делать и они превращаются в реликтовое тепловое облако подобно фотонному фоновому излучению, которое появится значительно позже. Сегодня это облако формирует нейтринное реликтовое излучение (НРИ) температурой 1,95 К. Есть небольшая надежда в обозримом будущем зарегистрировать его непосредственно.

Теперь давайте посмотрим, как формировались более легкие ядра. Протон и нейтрон могут столкнуться с образованием дейтрона и фотона:

p + n ? Н2 + ?.

Вначале слабо связанные дейтроны расщеплялись в ходе обратной реакции. Но когда температура снизилась в достаточной мере, дейтроны стали контактировать достаточно долго для того, чтобы могли сформироваться нейтрон и ядро Не3:

Н2 + Н2 ? Не3 + n или тритон и протон:

Н2 + Н2 ? Н3 + p.

He4 формировался следующим путем:

Н2 + Н3 ? Не4 + n или

Н2 + Не3 ? Не4 + р.

Li7 возник в ходе такой реакции:

H3 + He4 ? Li7 + ?,

a Be7 — этой:

Не3 + Не4 ? Be7 + ?.

И так далее. Это не полный список реакций, однако он должен дать общее представление о процессе.

Заметьте, что во всех этих реакциях сохраняется как атомный номер, соответствующий символу элемента, так и нуклонное число. Первое объясняется законом сохранения заряда. Второе — частный случай более общего закона сохранения барионного числа, о котором мы поговорим позднее.

Изменение массовой доли различных легких элементов относительно протонов с течением времени показано на рис. 10.3. Иллюстрация взята из онлайн-учебника Эдварда Райта по космологии{200} и основана на работе Берлса, Ноллетта и Тернера{201}. Как мы видим, максимум их продукции приходится примерно на 200-ю с, а распространенность большинства частиц снижается примерно через 1000 с. Li6 появляется совсем ненадолго, а нейтроны быстро исчезают по мере своего распада или формирования атомных ядер. Только Не4 образуется в значимом количестве.

Рис. 10.3. Массовая доля нуклонов и ядер по отношению к протонам в ранней Вселенной в зависимости от времени. Иллюстрация предоставлена Эдвардом Л. Райтом

Затем нуклеосинтез прекратился из-за отсутствия стабильных ядер, состоящих из пяти или восьми нуклонов. Как мы уже знаем, более тяжелые ядра синтезируются позднее, в условиях температуры и давления, характерных для коллапсирующих звезд.

Общепринятая модель первичного нуклеосинтеза, используемая большинством специалистов по ядерной космологии, опирается на один-единственный параметр ? — отношение числа барионов к числу фотонов, имеющее порядок 10-9. Барион — родовое понятие физики частиц, обозначающее определенный класс частиц, включающий протоны и нейтроны (см. главу 11). На этом этапе жизни ранней Вселенной протоны, нейтроны и ядра, сформировавшиеся из них, были единственными существующими барионами.

Распространенность Не4 (около 25% всей массы протонов) слабо зависит от условий, существовавших в ранней Вселенной. Вот почему даже самые первые приблизительные оценки, сделанные тогда, когда об этих условиях знали еще крайне мало, оказались близкими к истине. В то же время оставшиеся легкие ядра, в особенности дейтроны (H2), очень чувствительны к массовой плотности барионов ?B которая на тот момент равнялась просто нуклонной плотности.

Барионная плотность обычно выражается соотношением ?B = ?B/?c, где ?c — это критическая плотность — средняя плотность Вселенной, когда положительная кинетическая энергия и отрицательная гравитационная энергия точно уравновешивали друг друга. По самым последним данным, ?c = 9,467?10–30 г/см3. В модели Фридмана, описанной в главе 8, это ситуация, при которой коэффициент кривизны k = 0 и Вселенная представляет собой евклидово пространство, хотя, как мы вскоре увидим, k = ±1 тоже не исключается.

На рис. 10.4 приведена теоретическая и экспериментально измеренная распространенность элементов в порядке их доли относительно числа протонов. Полосами показаны экспериментальные количества, при этом ширина полос указывает на погрешность измерений{202}.

Рис. 10.4. Распространенность ядер разных элементов в зависимости от барионной плотности. Полосами показаны последние экспериментальные значения. Иллюстрация предоставлена Эдвардом Л. Райтом 

Этот график не опирается на старые данные и теории, на нем представлена последняя информация на момент написания этой книги, когда появились результаты исследований микроволнового анизотропного зонда Уилкинсона (WMAP), существенно дополнившие предыдущие данные{203}. На подходе еще более точные результаты наблюдений, выполненные космической обсерваторией «Планк», однако данных, полученных WMAP, вполне достаточно для наших целей.

Здесь указана зависимость распространенности ядер химических элементов от ?Bh2, где h — безразмерный множитель, который вводит поправку на возможные изменения эмпирического значения постоянной Хаббла H0 (не следует путать здесь h с постоянной Планка). Итак, космологи считают Н0 = 100h километров в секунду на мегапарсек. По последней оценке h = 0,71.

Оценить первичную распространенность элементов нелегко. Ученым приходится опираться на значения, измеренные для современной Вселенной, а затем вычислять, какая доля приходится на первичные элементы.

Не4 также образуется в звездах в ходе первичной реакции ядерного синтеза, протекающей в их недрах, однако он выходит наружу только тогда, когда они взрываются сверхновыми, а это происходит только с самыми тяжелыми звездами. Не4 можно наблюдать в горячем ионизированном газе в других галактиках и так называемых звездах с низкой металличностью, при этом металлом считается любой элемент после гелия, то есть такие звезды, вероятнее всего, состоят преимущественно из первичного вещества.

Все еще существуют некоторые разногласия относительно точного соотношения Не4 и протонов, однако расчеты становятся все более точными{204}. На самом деле, как и в случае упомянутого ранее ограничения, которое космология накладывает на количество типов нейтрино, распространенность гелия также прочно связана с точным временем жизни нейтронов, так что тут мы снова видим, как важна субатомная физика для космологии и наоборот{205}.

Дейтерий, Н2, имеет очень нестойкое ядро, состоящее из протона и нейтрона. Оно легко разрушается в ходе ряда астрофизических процессов. Последняя оценка его первичной распространенности основана на наблюдении линий поглощения в очень далеких межгалактических облаках, где его источником являются квазары.

Li7 образуется и разрушается в звездах. Его первичную распространенность оценили на основании его распространенности в атмосферах самых старых звезд в гало нашей Галактики, которые, как считается, еще не сильно истощили свои запасы лития.

Первичный Н2 превращается в звездах в Не3, однако данные измерений говорят о том, что их суммарная распространенность примерно постоянна. Поэтому распространенность Не3 вычисляют, вычитая из этой суммы распространенность Н2, оцененную другим способом.

Как можно увидеть на рис. 10.4, модель первичного нуклеосинтеза в значительной степени согласуется с данными наблюдений. Первичная распространенность ядер четырех элементов рассчитана точно на основании единственного параметра — барионной плотности. Все ядра, кроме Не4, сильно зависят от этого параметра, хотя точные значения их распространенности рассчитаны математически. Все пять значений полностью соответствуют данным наблюдений.

Благодаря Дэвиду Шрамму, а также его студентам и коллегам модель Большого взрыва прочно укрепилась, подтвержденная этими данными. Ни одна из альтернативных теорий, которыми еще бросаются некоторые ученые, и близко не подошла к такому результату. На самом деле они даже не представляют, как это можно сделать. Давайте посмотрим правде в глаза. Большой взрыв произошел.