Глава 10. Квантовая геометрия

We use cookies. Read the Privacy and Cookie Policy

Примерно за десятилетие Эйнштейн в одиночку сокрушил многовековые устои теории Ньютона, представив миру совершенно новую и значительно более глубокую теорию гравитации. И эксперты, и неспециалисты были покорены завораживающим изяществом и фундаментальной новизной формулировки общей теории относительности Эйнштейна. Не следует, однако, забывать о благоприятных исторических обстоятельствах, в значительной мере способствовавших успеху исследований Эйнштейна. Главное из них состоит в том, что Эйнштейну были известны математические результаты, полученные в XIX в. Георгом Бернгардом Риманом. Эти результаты давали возможность описания искривлённых пространств произвольной размерности в рамках строгого геометрического аппарата. В знаменитой инаугурационной лекции 1854 г. в Гёттингенском университете Риман перешёл через Рубикон мышления в рамках плоского евклидового пространства и проложил дорогу к единообразному математическому описанию геометрии всех типов искривлённых пространств. Именно пионерские идеи Римана позволили математикам дать количественное описание искривлённых пространств, подобных тем, которые иллюстрировались на рис. 3.4 и 3.6.

Гениальность Эйнштейна состояла в осознании того, что эти математические идеи были идеально приспособлены для выражения его новых взглядов на гравитационное взаимодействие. Он смело заявил о том, что математические понятия римановой геометрии безупречно согласуются с физикой гравитации.

Но сейчас, почти век спустя после научного подвига Эйнштейна, теория струн даёт нам квантово-механическое описание гравитации, требующее пересмотра общей теории относительности на длинах порядка планковской. А так как в основе общей теории относительности лежит понятие римановой геометрии, то и само это понятие должно быть модифицировано для соответствия новой физике, возникающей на малых расстояниях в теории струн. И если в общей теории относительности постулируется, что свойства искривлённого пространства Вселенной описываются геометрией Римана, то в теории струн утверждается, что данный постулат справедлив лишь в случае, когда структура Вселенной рассматривается на достаточно больших масштабах. На длинах порядка планковской должна вступать в игру новая геометрия, согласующаяся с новой физикой теории струн. Эту новую геометрию называют квантовой геометрией.

В отличие от геометрии Римана, здесь нет готовых геометрических рецептов, уже описанных в книгах по математике и пригодных для того, чтобы занимающиеся струнами физики могли взять их на вооружение и использовать в этой науке. Напротив, современные физики и математики погружены в исследования в теории струн, по крупицам собирая знания, которые лягут в основу новой области физики и математики. И хотя основная часть работы ещё впереди, в ходе этих исследований уже было открыто много новых диктуемых теорией струн геометрических свойств пространства-времени, которые наверняка произвели бы впечатление и на самого Эйнштейна.