Минимальный размер
Предыдущее обсуждение было лишь разминкой; теперь мы перейдём к главному. Если всё время измерять расстояния «простым способом», т. е. использовать самые лёгкие моды струны вместо самых тяжёлых, полученные результаты всегда будут больше планковской длины. Чтобы это понять, посмотрим, что будет происходить при гипотетическом Большом сжатии всех трёх пространственных измерений в предположении, что они являются циклическими. Для определённости примем, что в начале мысленного эксперимента лёгкими являются моды ненамотанных струн и измерения с их помощью показывают, что радиус Вселенной огромен, а Вселенная сжимается. По мере сжатия эти моды будут становиться тяжелее, а топологические моды легче. Когда радиус уменьшится до планковской длины, т. е. R станет равным 1, массы топологических и колебательных мод станут сравнимы. Два подхода к измерению расстояния окажутся одинаково сложными для осуществления, и, кроме того, оба они приведут к одинаковому результату, так как единица обратна самой себе.
По мере того как радиус будет продолжать уменьшаться, топологические моды станут легче, и, поскольку мы всегда выбираем «простой способ», именно они будут теперь использоваться для измерения расстояний. Так как этот метод измерения даёт значения, обратные значениям в случае колебательных мод, радиус будет больше планковской длины, и этот радиус будет возрастать. Это простое следствие того, что при стягивании R (измеряемого с помощью ненамотанных струн) до 1 и дальнейшем сжатии, величина 1/R (измеряемая с помощью намотанных струн) будет увеличиваться до 1 и продолжать расти. Следовательно, если всегда следить за тем, чтобы для измерений использовались лёгкие моды струны, т. е. чтобы всегда использовался «простой способ» измерения расстояний, то минимальным зарегистрированным значением будет планковская длина.
В частности, здесь удаётся избежать Большого сжатия до нулевого размера: радиус Вселенной, измеряемый с помощью лёгких мод струн-зондов, всегда больше планковской длины. Вместо того чтобы переходить через значение планковской длины в сторону меньших размеров, радиус, измеряемый с помощью самых лёгких мод, уменьшается до планковской длины и тут же начинает расти. Сжатие заменяется расширением.
Использование лёгких мод струны согласуется с традиционным понятием длины, которое существовало задолго до открытия теории струн. Именно это понятие расстояния ответственно, как обсуждалось в главе 5, за возникновение неразрешимых проблем с бурными квантовыми флуктуациями в случае, если масштабы, меньшие планковских, считаются физически значимыми. Здесь ещё с одной точки зрения видно, что с помощью теории струн можно избежать ультрамикроскопических расстояний. В физической формулировке общей теории относительности и в соответствующей математической формулировке римановой геометрии есть только одно понятие расстояния, и оно может быть сколь угодно малым. В физической формулировке теории струн и в разрабатываемой для неё области математики — квантовой геометрии — есть два понятия расстояния. Их осмысленное использование даёт понятие расстояния, которое согласуется как с нашей интуицией, так и с общей теорией относительности, если масштабы достаточно велики, но радикально отличается от последних, если эти масштабы становятся малыми. Одно из отличий состоит в том, что расстояния, меньшие планковской длины, недосягаемы.
Приведённые утверждения достаточно сложны, поэтому ещё раз подчеркнём один из главных моментов. Если мы принципиально будем игнорировать различие между «простым» и «трудным» подходами к измерению длины и будем, например, продолжать использовать моды ненамотанной струны при стягивании R за планковскую длину, то, казалось бы, мы действительно сможем измерить расстояния, меньшие планковской длины. Однако, как говорилось выше, слово «расстояния» в предыдущем предложении должно быть аккуратно определено, так как у этого слова два различных значения, и только одно из них соответствует нашему традиционному пониманию. А в данном случае, когда R становится меньше планковской длины, но мы продолжаем использовать ненамотанные струны (несмотря на то, что они теперь тяжелее намотанных), мы используем «трудный» подход к измерению расстояний, и смысл понятия «расстояние» не соответствует общеупотребительному значению этого слова. Эти рассуждения, однако, далеко выходят за рамки семантики или даже за рамки обсуждения удобства или практичности измерения. Даже если мы выберем нестандартное понятие расстояния, считая радиус меньшим, чем планковская длина, законы физики, как обсуждалось в предыдущих пунктах, будут идентичны законам физики во Вселенной, где этот радиус (в обычном понимании расстояния) будет больше планковской длины (об этом, например, свидетельствует точное соответствие табл. 10.1 и 10.2). А для нас важна именно физика, а не терминология.
На основе этих идей Бранденбергер, Вафа и другие физики предложили переписать законы космологии таким образом, чтобы в моделях Большого взрыва или возможного Большого сжатия фигурировала не Вселенная нулевого размера, а Вселенная, все размеры которой равны планковской длине. Безусловно, это весьма интересное предложение для устранения математических, физических и логических нестыковок в описании Вселенной, рождающейся из точки с бесконечной плотностью и схлопывающейся в эту точку. Конечно, сложно вообразить себе Вселенную, сжатую до крошечной песчинки планковского размера, но вообразить себе Вселенную, сжатую до нулевого размера — вот это уж действительно слишком. Весьма вероятно, что более удобоваримую альтернативу стандартной модели Большого взрыва даст находящаяся сейчас в зачаточном состоянии струнная космология, которую мы обсудим в главе 14.
Насколько общий этот вывод?
Что произойдёт, если пространственные измерения не являются циклическими? Будут ли и в этом случае справедливы замечательные утверждения теории струн о минимальных пространственных размерах? Никто не знает точного ответа. Важнейшее свойство циклических измерений состоит в том, что на них можно наматывать струны. Коль скоро на пространственные измерения можно наматывать струны, большинство выводов будут оставаться справедливыми вне зависимости от точного вида этих измерений. Но что будет, если, скажем, два измерения имеют вид сферы? Тогда нельзя заставить струны сохранять намотанную конфигурацию: они всегда могут «соскользнуть» подобно тому, как резинка может соскользнуть с мяча, на который она натянута. Накладывает ли теория струн ограничение на минимальный размер и в этом случае?
Судя по результатам многочисленных исследований, ответ зависит от того, сжимается ли всё пространственное измерение (как в примерах этой главы), или (с чем мы столкнёмся в главах 11 и 13) коллапсирует отдельный «кусок» пространства. Как считает большинство теоретиков, независимо от вида пространства существует минимальный предел сжатия всего пространственного измерения, и механизм возникновения этого предела во многом схож с механизмом в случае циклических измерений. Обоснование существования предела является важной задачей дальнейших исследований ввиду её непосредственного влияния на многие аспекты теории струн, включая следствия для космологии.