Что представляют собой порции?
Планк не мог обосновать гипотезу дискретности энергии волн, играющую центральную роль в предложенном им решении. За исключением того, что это работает, ни у Планка, ни у кого-либо ещё не было никакого рационального объяснения, почему всё должно быть именно так. Как заметил однажды физик Георгий Гамов, это подобно тому, как если бы природа разрешала либо пить целый литр пива, либо не пить совсем, не допуская никаких промежуточных доз.{18} В 1905 г. Эйнштейн нашёл объяснение, за которое он получил Нобелевскую премию 1921 г. по физике.
Эйнштейн пришёл к своему объяснению, пытаясь решить проблему, известную под названием фотоэлектронной эмиссии (фотоэффекта). В 1887 г. немецкий физик Генрих Герц впервые обнаружил, что когда электромагнитное излучение (свет) падает на некоторые металлы, они испускают электроны. Само по себе это свойство не слишком удивительно. Известно, что некоторые из электронов металлов слабо связаны с ядрами атомов (именно поэтому металлы являются столь хорошими проводниками электричества). Когда свет сталкивается с поверхностью металла, он отдаёт энергию: при столкновении с вашей кожей это приводит к нагреву тела. Переданная энергия может возбуждать электроны в металлах, при этом некоторые из слабосвязанных электронов могут выбиваться с поверхности.
Странные свойства фотоэффекта становятся явными при более детальном изучении характеристик испускаемых электронов. На первый взгляд может показаться, что при увеличении интенсивности (яркости) света скорость вылетевших электронов также должна увеличиваться, поскольку падающее электромагнитное излучение будет нести больше энергии.
Однако этого не происходит. Вместо этого происходит увеличение числа вылетевших электронов, но их скорость остаётся постоянной. С другой стороны, было экспериментально установлено, что скорость вылетевших электронов увеличивается при увеличении частоты падающего света и, соответственно, уменьшается при её уменьшении. (Для электромагнитных волн в видимой части спектра увеличение частоты соответствует изменению цвета от красного к оранжевому, жёлтому, зелёному, голубому, синему и, наконец, к фиолетовому. Излучение, частота которого превышает частоту фиолетового света, невидимо: эта часть спектра начинается с ультрафиолетового излучения, за которым следует рентгеновское. Электромагнитные волны, частота которых ниже частоты красного света, также невидимы; они соответствуют инфракрасному излучению.) В действительности, при уменьшении частоты света наступает момент, когда скорость вылетевших электронов падает до нуля, и они перестают вылетать с поверхности независимо от интенсивности источника света. По какой-то неизвестной причине цвет падающего луча света, а не его полная энергия, определяет, испускаются ли электроны, и если испускаются, то какую энергию имеют.
Чтобы понять, как Эйнштейн объяснил эти загадочные факты, вернёмся к нашему арендуемому помещению, которое теперь нагревается до комфортной температуры 25 °C. Представим, что ненавидящий детей домовладелец потребовал, чтобы все, кому не исполнилось пятнадцати лет, жили в подвале, который взрослые могут видеть с балкона, опоясывающего здание. Более того, любой из огромного количества детей в подвале может выйти из здания, лишь заплатив привратнику плату за выход в 85 центов. (Этот домовладелец такой негодяй.) Взрослые, которые согласно вашему предложению распределили все деньги по номиналам в соответствии с описанной выше схемой, могут передать деньги детям, только бросая их с балкона. Давайте посмотрим, что при этом произойдёт.
Держатель одноцентовых монет бросает несколько из них вниз, но это слишком малая сумма, чтобы кто-то из детей мог заплатить за выход. И, поскольку внизу находится «бесконечное» море детей, с криками сражающихся за падающие монеты, то даже если обладатель центов бросит огромное количество монет, ни один ребёнок не сможет собрать 85 центов, которые он должен уплатить. То же самое получится у тех взрослых, которые владеют пятицентовыми, десятицентовыми и двадцатипятицентовыми монетами. Хотя каждый из них бросит вниз огромное количество денег, любой ребёнок сочтёт за счастье, если ему достанется хотя бы одна монета (большинство же не получит ни одной), и уж точно никто не сможет набрать сумму в 85 центов, необходимую для выхода из подвала. Но когда деньги начнёт бросать владелец однодолларовых купюр — даже небольшими суммами, доллар за долларом, — те счастливчики, кому удастся поймать одну единственную банкноту, смогут сразу же покинуть подвал. Обратите внимание, что даже когда этот человек наверху как следует расщедрится и начнёт бросать доллары бочками, количество выходящих детей увеличится во много раз, но у каждого останется ровно 15 центов после получения сдачи у привратника. Это будет справедливо независимо от числа брошенных долларов.
Рассмотрим теперь, как применить всё это к фотоэффекту. Основываясь на рассмотренных выше экспериментальных данных, Эйнштейн решил распространить планковскую дискретную модель энергии волны на новое определение света. Согласно Эйнштейну, световой луч должен рассматриваться как поток микроскопических частиц света, окрещённых химиком Гильбертом Льюисом фотонами (мы уже использовали этот термин в примере со световыми часами, приведённом в главе 2). Для того чтобы дать представление о масштабах в рамках корпускулярной модели света, скажем, что обычная электрическая лампочка мощностью 100 Вт излучает примерно сто миллиардов миллиардов (1020) фотонов в секунду. Эйнштейн использовал это новое положение для объяснения механизма, лежащего в основе фотоэффекта. Он предположил, что электрон вырывается с поверхности металла, если с ним столкнётся фотон, обладающий достаточным количеством энергии. А чем определяется энергия отдельного фотона? Для объяснения экспериментальных данных Эйнштейн вслед за Планком предположил, что энергия каждого фотона пропорциональна частоте световой волны (при этом коэффициент пропорциональности равен постоянной Планка).
Тогда, как и в случае минимальной суммы, необходимой для уплаты за выход ребёнка, чтобы вырваться с поверхности, электроны в металле должны испытать соударение с фотоном, обладающим определённым минимальным количеством энергии. (Как и в случае с детьми, сражающимися за деньги, вероятность того, что отдельно взятый электрон испытает соударение более чем с одним фотоном исчезающе мала — большинство электронов не испытает вообще ни одного соударения.) Однако если частота падающего света слишком мала, энергия составляющих его фотонов будет недостаточной, чтобы вырывать электроны. Точно так же, как никто из детей не сможет покинуть подвал, несмотря на огромное количество мелких монет, которые им бросят взрослые, ни один электрон не сможет выйти из металла, несмотря на огромное общее количество энергии, содержащейся в падающем свете, если его частота (и, следовательно, энергия отдельных фотонов) будет слишком низкой.
Но так же, как дети смогут начать покидать подвал, как только номинал бросаемых им денег станет достаточно большим, электроны начнут вырываться с поверхности металла, как только частота падающего на них света — его энергетический номинал — станет достаточно высокой. Далее, так же, как в случае, когда владелец однодолларовых купюр увеличил общую сумму сбрасываемых денег, увеличив число бросаемых банкнот, интенсивность луча света, имеющего заданную частоту, возрастёт при увеличении числа фотонов, которые он содержит. И точно так же, как большее число долларов приведёт к тому, что больше детей смогут покинуть подвал, увеличение числа фотонов приведёт к тому, что большее число электронов испытает соударение и покинет металл. Обратите внимание, что энергия каждого из этих электронов после выхода из металла зависит исключительно от частоты светового луча, а не от его суммарной интенсивности. Так же, как дети покидают подвал с 15 центами, независимо от того, сколько купюр было брошено им с балкона, каждый электрон покидает поверхность с одной и той же энергией и, следовательно, с одной и той же скоростью, независимо от общей интенсивности падающего света. Большее количество денег просто означает, что большее число детей смогут покинуть подвал; большая суммарная энергия светового луча означает, что больше электронов будет вырвано из металла. Если мы хотим, чтобы дети покидали подвал с большим количеством денег, мы должны увеличить номинал купюр, которые им бросаем; если мы хотим, чтобы электроны выходили из металла с большей скоростью, следует увеличить частоту падающего светового луча, т. е. увеличить энергетический номинал фотонов, которые падают на поверхность металла.
Сказанное полностью подтверждается экспериментальными данными. Частота света (его цвет) определяет скорость вылетающих электронов, суммарная интенсивность света — количество вылетевших электронов. Таким образом, Эйнштейн показал, что гипотеза Планка о дискретности энергии на самом деле отражает фундаментальное свойство электромагнитных волн: они состоят из частиц — фотонов, которые представляют собой маленькие порции или кванты света. Дискретность энергии, заключённой в таких волнах, связана с тем, что они состоят из дискретных объектов.
Прозрение Эйнштейна представляло собой большой шаг вперёд. Но, как мы увидим ниже, история была не такой гладкой, как может показаться.