Приближает ли к ответу приближение?

We use cookies. Read the Privacy and Cookie Policy

Нельзя сказать заранее. Хотя математические формулы, соответствующие диаграммам, значительно усложняются при увеличении числа петель, теоретикам удалось установить одно очень важное свойство. Подобно тому, как вероятность разрыва каната на две части при сильном растяжении и раскачивании определяется его прочностью, вероятность распада струны с образованием виртуальной пары при квантовых флуктуациях также определяется некоторым параметром. Этот параметр называют константой связи струны (как мы вскоре увидим, в каждой из пяти теорий струн своя константа связи). Это название довольно наглядно: значение константы связи струны определяет, насколько сильно квантовые колебания трёх струн (исходной струны и двух виртуальных струн, на которые она распадается) зависят друг от друга, т. е. насколько сильно три струны связаны между собой. Вычисления показывают, что при больших значениях константы связи струны вероятность того, что квантовые флуктуации приведут к распаду струны (и её последующему воссоединению), становится больше, а при малых значениях константы связи вероятность такого краткосрочного образования виртуальных струн мала.

Немного ниже мы обсудим вопрос об определении константы связи струны в каждой из пяти теорий, однако сначала необходимо уточнить, что означают слова «большая» и «малая» применительно к константе связи. Оказывается, что с точки зрения математического формализма теории струн границей между областями «больших» и «малых» констант связи является число 1. Это означает, что при константах связи, меньших 1, молниеносное вырывание большого числа пар виртуальных струн становится крайне маловероятным. Однако если константа связи больше или равна 1, то краткосрочное появление на сцене таких виртуальных пар становится весьма вероятным и увеличивается с увеличением константы связи струны.[41] В итоге, при константах связи струны, меньших 1, вклады диаграмм с петлями при увеличении числа петель уменьшаются. Это как раз то, что нужно для подхода с использованием теории возмущений: уменьшение вкладов говорит о том, что мы получим достаточно точные результаты, если будем пренебрегать всеми вкладами, кроме вкладов диаграмм, содержащих лишь несколько петель. Но если константа связи струны больше 1, то по мере увеличения числа петель старшие петлевые вклады становятся всё более важными. Как и в случае тройной системы звёзд, теория возмущений здесь неприменима. И первое приближение, которое дают диаграммы без петель, приближением не является. (Всё это в равной мере относится к каждой из пяти теорий струн, так как применимость приближённого подхода с использованием теории возмущений к любой заданной теории определяется значением константы связи.)

Поэтому возникает ещё один важнейший вопрос: чему же равно значение константы связи (точнее, чему равны значения констант связи струны в каждой из пяти теорий струн)? Найти ответ до сих пор никому не удалось. Этот вопрос является одним из главных нерешённых вопросов в теории струн. Можно с уверенностью утверждать, что выводы, полученные в рамках теории возмущений, справедливы лишь в случае, если константа связи струны меньше единицы. Кроме того, точное значение константы связи струны непосредственно влияет на массы и заряды частиц, соответствующих её различным колебательным модам. Таким образом, значение константы связи струны определяет большинство физических свойств теории. Сейчас мы подробнее обсудим причины того, почему на вопрос о значении константы связи во всех пяти теориях струн до сих пор нет ответа.