Суперсимметрия и суперпартнёры

We use cookies. Read the Privacy and Cookie Policy

Как мы уже подчёркивали, хотя понятие спина имеет поверхностное сходство с образом вращающегося волчка, оно имеет и значительные отличия, связанные с его квантовой природой. Открытие спина в 1925 г. показало, что имеется ещё один вид вращательного движения, который попросту не существует в чисто классической Вселенной.

Это позволяет задать следующий вопрос: если обычное вращательное движение приводит к принципу симметрии, носящему название инвариантности относительно вращений («физика рассматривает все возможные направления в пространстве как равноправные»), не ведёт ли это более специфическое вращательное движение ещё к одному принципу симметрии законов природы? Примерно к 1971 г. физики показали, что ответ на этот вопрос положителен. Хотя полное доказательство достаточно сложно, основная идея состоит в том, что если рассматривать спин с математической точки зрения, возможна ровно одна дополнительная симметрия законов природы. Она получила название суперсимметрии.{34}

Суперсимметрии не может быть поставлено в соответствие простое и интуитивно понятное изменение точки зрения наблюдателя: сдвиги во времени, пространственном положении, угловой ориентации и скорости движения уже исчерпали эти возможности. Однако поскольку спин представляет собой «подобие вращательного движения, имеющее квантово-механическую природу», суперсимметрия связана с изменением точки зрения наблюдателя в «квантово-механическом расширении пространства и времени». Кавычки здесь очень важны, поскольку последняя фраза даёт только общее представление о месте суперсимметрии в общей системе принципов симметрии природы.{35} Однако понимание принципа суперсимметрии является довольно сложной задачей, и мы сконцентрируем внимание на его основных следствиях, на том, согласуются ли законы природы с этим принципом. Этот вопрос гораздо легче поддаётся объяснению.

В начале 1970-х гг. физики пришли к выводу, что если Вселенная является суперсимметричной, частицы природы должны входить в набор наблюдаемых частиц парами, при этом спин частиц, образующих пару, должен отличаться на 1/2. Такие пары частиц — независимо от того, считаются ли они точечными (как в стандартной модели) или крошечными колеблющимися петлями — называются суперпартнёрами. Поскольку частицы вещества имеют спин 1/2, а некоторые из частиц, передающих взаимодействие — спин 1, суперсимметрия приводит к выводу о наличии пар, о партнёрстве частиц вещества и частиц, передающих взаимодействие. Сам по себе этот вывод выглядит весьма привлекательно с точки зрения объединения частиц в одну теорию. Проблема кроется в деталях.

К середине 1970-х гг., когда физики искали способ, который позволил бы включить суперсимметрию в стандартную модель, они обнаружили, что ни одна из известных частиц, перечисленных в табл. 1.1 и 1.2, не может быть суперпартнёром для другой. Как показал тщательный теоретический анализ, если Вселенная включает принцип суперсимметрии, то каждой известной частице должна соответствовать ещё не открытая частица-суперпартнёр, спин которой на половину меньше, чем спин её известного партнёра. Так, партнёр электрона должен иметь спин 0; эта гипотетическая частица получила название сэлектрона (сокращение от термина суперсимметричный электрон). То же самое справедливо и для других частиц вещества. Например, имеющие спин 0 гипотетические суперпартнёры нейтрино и кварков получили название снейтрино и скварков. Аналогично частицы, передающие взаимодействия, должны иметь суперпартнёров со спином 1/2. Для фотонов это будут фотино, для глюонов — глюино, для W-бозонов и Z-бозонов — ви?но и зи?но.

Таким образом, при более внимательном изучении суперсимметрия оказалась чрезвычайно неэкономичным понятием: она требовала большого количества дополнительных частиц, дублировавших список фундаментальных компонентов. Поскольку ни одна из частиц-суперпартнёров не была обнаружена, вы можете довольствоваться приведённым в главе 1 замечанием Раби по поводу открытия мюона, немного усилив его звучание: «Никто не заказывал суперсимметрию», и, без долгих рассуждений, отказаться от этого принципа симметрии. Существуют, однако, три причины, по которым многие физики твёрдо убеждены, что такой скоропалительный отказ от суперсимметрии был бы преждевременным. Обсудим эти причины.