Седьмое действие

We use cookies. Read the Privacy and Cookie Policy

Мы упоминали уже, что пятое действие – возвышение в степень – имеет два обратных. Если

аb = с ,

то разыскание а есть одно обратное действие – извлечение корня; нахождение же b — другое, логарифмирование. Полагаю, что читатель этой книги знаком с основами учения о логарифмах в объеме школьного курса. Для него, вероятно, не составит труда сообразить, чему, например, равно такое выражение:

Нетрудно понять, что если основание логарифмов а возвысить в степень логарифма числа b , то должно получиться это число b .

Для чего были придуманы логарифмы? Конечно, для ускорения и упрощения вычислений. Изобретатель первых логарифмических таблиц, Непер, так говорит о своих побуждениях:

«Я старался, насколько мог и умел, отделаться от трудности и скуки вычислений, докучность которых обычно отпугивает весьма многих от изучения математики».

В самом деле, логарифмы чрезвычайно облегчают и ускоряют вычисления, не говоря уже о том, что они дают возможность производить такие операции, выполнение которых без их помощи очень затруднительно (извлечение корня любой степени).

Не без основания писал Лаплас, что «изобретение логарифмов, сокращая вычисления нескольких месяцев в труд нескольких дней, словно удваивает жизнь астрономов». Великий математик говорит об астрономах, так как им приходится делать особенно сложные и утомительные вычисления. Но слова его с полным правом могут быть отнесены ко всем вообще, кому приходится иметь дело с числовыми выкладками.

Нам, привыкшим к употреблению логарифмов и к доставляемым ими облегчениям выкладок, трудно представить себе то изумление и восхищение, которое вызвали они при своем появлении. Современник Непера, Бригг, прославившийся позднее изобретением десятичных логарифмов, писал, получив сочинение Непера: «Своими новыми и удивительными логарифмами Непер заставил меня усиленно работать и головой и руками. Я надеюсь увидеть его летом, так как никогда не читал книги, которая нравилась бы мне больше и приводила бы в большее изумление». Бригг осуществил свое намерение и направился в Шотландию, чтобы посетить изобретателя логарифмов. При встрече Бригг сказал:

«Я предпринял это долгое путешествие с единственной целью видеть вас и узнать, помощью какого орудия остроумия и искусства были вы приведены к первой мысли о превосходном пособии для астрономии – логарифмах. Впрочем, теперь я больше удивляюсь тому, что никто не нашел их раньше, – настолько кажутся они простыми после того, как о них узнаешь».