Глава 18. СОМНЕНИЯ И ВОЗРАЖЕНИЯ

Жуки-физики в футбольном мяче

Вот небольшое сомнение.

Можно подумать так. Обман Людмилы, предпринятый Черномором, удался благодаря исключительно плавному, строго равномерному ускорению ракеты. Неравномерное ускорение — тряска и толчки — немедленно указало бы, что ракета движется. Удар, встряска — значит, нарушился относительный покой в мчащейся комнате, что тотчас отметят и механические и оптические приборы, да и человеческие ощущения.

Верно. Людмилу насторожили бы толчки. Возможно, она догадалась бы, что дело неладно, потому что с детства привыкла к постоянству земного тяготения.

Но это отнюдь не подрывает вывода, сделанного Эйнштейном. Ибо привычка к постоянству тяготения — чисто житейская. Нам с вами, не космонавтам, никогда не случалось, сидя на стуле, вдруг почувствовать, что тяжесть стала меньше или больше (во время землетрясений, наверное, ощущение похоже, да еще в лифте, в самолете; но там-то мы наверняка знаем, что движемся).

Физик же, заключенный в закрытой ракете, ощутив толчки, должен заглушить в себе голос привычки. Тогда он вправе дать два совершенно противоположных объяснения. Или произошло изменение ускорения. Или толчок вызван изменением силы тяжести. И опять-таки никакими опытами, никакими измерениями он не сумеет отдать предпочтение одному из этих вариантов.

Вообразите физическую лабораторию, устроенную внутри футбольного мяча. Крошечные лаборанты (например, какие-нибудь фантастические жуки или муравьи) не знают, что происходит снаружи. То ли мяч скачет по полю под ударами игроков (тогда толчки и перегрузки вызваны ускорениями), то ли мяч неподвижен, но в нем происходит пляска тяготения (тогда толчки вызваны быстро меняющимися силами тяжести).

Хладнокровие в лифте

С точки зрения классической механики лаборатория в мяче и ракета Черномора были ареной игры сил инерции. По Ньютону, никаких изменений тяготения там не было. Уместен и обратный пример, в котором ньютонианец нашел бы действие не инерции, а тяжести.

Придумал такой пример сам Эйнштейн. Это падающий лифт.

Оборвался канат, кабинка лифта стремглав падает, влекомая земным тяготением. В конце концов она достигает дна шахты — и наступают печальные последствия.

Если вы достаточно хладнокровны, чтобы размышлять на научные темы в падающем лифте, то можете, по Эйнштейну, считать себя неподвижным. Это засвидетельствуют и механические и оптические опыты. Они зарегистрируют идеальную невесомость и строго прямолинейное распространение светового луча — как в далеком космосе, в ракете, которая летит без ускорений, по инерции. Или по инерции же пребывает в покое (что, конечно, изнутри неотличимо от прямолинейного равномерного движения).

Прежде инерция была сведена к тяготению. Ускорением мы создали тяжесть. Теперь же, наоборот, тяготение сведено к инерции. Ускорение ликвидировало тяжесть.

Итак, Эйнштейн считает равноправными две системы отсчета: ракету, неподвижную в поле земного тяготения, и ракету, летящую вне поля тяготения с ускорением g. Либо лифт, покоящийся или равномерно летящий в глубинах космоса вне полей тяготения, и лифт, который свободно падает в поле тяжести. Основание для такого заключения дал высший судья физических высказываний — его величество эксперимент.

Если никакими способами невозможно отличить одно явление от другого, значит, эти явления физически тождественны. Их различие — только в названии. Немец говорит «der Tisch», русский — «стол», а предмет, обозначаемый этими названиями, один и тот же, ибо физических признаков отличия нет.

Похищенная Людмила, веря в свою неподвижность, назвала стремление тел книзу тяготением. Руслан, от которого умчали Людмилу, сказал бы: «Нет, это инерция».

Обитатель падающего лифта, считавший себя неподвижным, не находил никакого тяготения и объяснял этим свою невесомость. Для него лифт летел по инерции. Лифтер же, оставшийся снаружи, объяснил движение лифта, как и пропажу в нем веса, тяготением.

Разные наблюдатели — разные слова. А суть — одна.

Инерция и тяготение — по Эйнштейну, физически тождественные явления природы (правда, с оговоркой, которую я приведу в следующей главе). Таков неожиданный и парадоксальный принцип эквивалентности инерции и тяготения. Он был провозглашен Эйнштейном еще до опубликования общей теории, в 1913 году. А из него прежде всего следует вывод, к которому мы добирались через всю книжку: инертная масса и тяжелая масса равны не потому, что они совпадают случайно (так выходило по Ньютону, помните?), а потому, что это одна и та же масса. Просто масса.

Стадионы на ракетах

Не очень вразумительные разговоры о табуретке, пятачке и изготовлении тяготения без услуг земного шара (хотя бы для организации в космосе Олимпиады № 100) теперь находят обоснование.

Что ж, резко подняв ладонь с пятачком, я действительно сотворил тяготение. Для физика-лилипута, пребывающего, допустим, на моей ладони, пятачок стал тяжелее — это покажут любые весы. А принцип эквивалентности стоит на страже справедливости такого мнения.

Тот же принцип поможет избежать противоречий среди участников сотых Олимпийских игр. Для спортсменов разных планет придется устроить в космосе по- разному ускоряющиеся крытые стадионы в виде платформ с колпаками, удерживающими искусственную атмосферу. Для спортсменов-землян потребуется стадион, разгоняемый ракетами «вверх» с ускорением g, для селенитов—другой, разгоняющийся с ускорением g/6, и т. д. На всех стадионах будут разные силы тяжести — по заказу судейской коллегии. И — никаких планет! Никаких «спокойных» источников тяготения вроде Земли! Стадионы летают взад-вперед (повороты во время перерывов), и всюду спортсмены прыгают, бегают, метают диски, гоняют и бросают мячи — в условиях привычной тяжести, как у себя на родине. Тяготение не имитируется, не подделывается. Оно создается.

Правда, правнуки-олимпийцы могут возразить, что проект технически сложен: требуется множество ракетных двигателей, возникают хлопоты с организацией движения стадионов. Предвидятся протесты и со стороны правнуков-болельщиков. Им, видите ли, неудобно будет летать без конца со стадиона на стадион и никак не удастся обозревать собственными глазами сразу полную картину состязаний (телевизоры к тому времени, надо думать, всем надоедят).

Хорошо. В таком случае я предлагаю другой — упрощенный проект. Он свободен от перечисленных недостатков, но, правда, имеет некоторые другие. Пусть он называется олимпийской каруселью.

Олимпийская карусель

Когда я в городском саду катаюсь на карусели, меня тянет вбок по радиусу центробежная сила инерции, но лодка моя прикреплена к спице, а спица надета на ось. И я не могу улететь вбок, движусь по кругу, удерживаемый центростремительной силой связи с осью. А инерцию воспринимаю как тяжесть, влекущую меня вбок, прочь от оси. С точки зрения кассира, который продает билеты, это, правда, не тяжесть, а все-таки инерция, что, однако, по Эйнштейну, не меняет сути явления.

Так в обычной карусели. Так и в олимпийской.

Она должна быть достаточно велика, эта космическая карусель. Вместо карусельной лодки или лошадки на ее спице — все тот же крытый стадион. Плоскостью своего поля он поставлен перпендикулярно к спице и параллельно оси вращения. Под прозрачным куполом — воздух. Таким образом, «верх» стадиона обращен внутрь, к оси карусели. Чем сильнее надо сделать тяготение, тем быстрее придется вращать спицу и тем дальше от оси расположить стадион.

Расстояние от оси лучше делать побольше. И вот почему.

Пусть длина спицы, на которой держится стадион, невелика — скажем, 100 метров. Тогда поле стадиона (шириной в те же 100 метров) будет либо кривым, как дно корыта, либо, если его сделать прямым, в разных местах будет иметь разное тяготение. В центре прямого поля тяготение окажется в ?3/2 раза меньше, чем по краям (учтя, что центробежная сила пропорциональна радиусу, проверьте это сами — простейшая геометрическая задачка). В обоих случаях прыгать и бегать будет затруднительно. Спортсмены попросят устроить прямое поле. И чтобы везде на нем было одинаковое тяготение.

Исполнить это требование можно.

Надо сделать так, чтобы размер стадиона был невелик по сравнению с длиной спицы. А поскольку длину беговых дорожек наши потомки, надо полагать, менять не пожелают, придется увеличить длину спицы. При двух-трехкилометровой спице на прямом стадионе вес игроков, перебегавших с краев к центру, будет варьироваться меньше, чем на свою тысячную долю. Пожалуй, терпимо.

А какова должна быть скорость вращения космической олимпийской карусели?

Чтобы устроить на стадионе, закрепленном на спице в километре от оси, такое же по силе тяготение, как на земной поверхности, стадион придется (опять простенькая школьная задачка!) заставить совершить один полный оборот вокруг оси за две минуты. Линейная скорость стадиона при этом окажется довольно значительной — 100 метров в секунду[13].

Говорит Маленький Принц

В чем достоинства олимпийской карусели?

Ее не придется непрерывно разгонять, как того требовали ускоряющиеся платформы со стадионами. В космосе отсутствует сопротивление среды — значит, достаточно одного хорошо рассчитанного толчка ракетными двигателями, и карусель начнет кружиться как положено и создавать надлежащее тяготение.

В общем, проект вышел неплохой. Я даже намеревался взять на него патент и принялся сочинять авторскую заявку. Но произошло волшебство: на мой письменный стол прилетел Маленький Принц из сказки Антуана де Сент-Экзюпери. Он сказал:

Здравствуй, — и присел на стопку книг.

Здравствуй, — сказал я.— Как поживаешь?

Он не ответил, поглощенный разглядыванием того, как я выписываю буковки на белой бумаге. Чтобы не вспугнуть его, я сделал вид, что нисколько не удивился. Наконец он вежливо попросил:

Пожалуйста, нарисуй мне то, что ты описываешь.

Я нарисовал ему олимпийскую карусель с беговой дорожкой и объяснил, что к чему. Маленький Принц на минутку задумался, и славное личико его стало печальным. Губы вздрогнули, из глаз полились слезы.

Я опешил. И тут же заговорил наигранно-бодрым голосом:

Ты совершенно напрасно плачешь. С чего это вдруг? Или тебе не нравится мой проект?

Не нравится.— Маленький Принц проглотил рыдание.

Почему же? Взгляни-ка, какой он хороший! Каждый житель Солнечной системы получит на нем свою силу тяжести...

Да, каждый, — сказал обиженно Маленький Принц.— Каждый, кроме меня...

Почему же?

Потому что я хочу выпуклый стадион. И выпуклую беговую дорожку. Да такую, чтобы всюду тяжесть была направлена к центру кривизны. Как на моем астероиде. А ты можешь сделать только прямой или вогнутый...

Маленький Принц снова заплакал. Он говорил, что не желает бегать на столе. Он ведь прилетел с крошечной планеты, где любая спортивная площадка как корка на куске арбуза. Я огорченно слушал и не знал, чем его утешить. Действительно, в моих проектах никак нельзя было устроить то, что подошло бы моему новому заказчику.

Карты спутаны

Надеюсь, после визита Маленького Принца читатель несколько запутался. Это как раз и требуется для четкого понимания дальнейшего.

В самом деле, вышло что-то нескладно.

С одной стороны, приведены факты, доказывающие полную взаимозаменяемость инерции и тяготения: похищенная Людмила, жуки-физики в мяче, хладнокровный человек в падающем лифте дружно засвидетельствовали невозможность отличить одно от другого. На этом основании был провозглашен эйнштейновский принцип эквивалентности инерции и тяготения, утверждена относительность всех движений (а не только равномерных и прямолинейных). Стало понятно равенство тяжелой и инертной масс, разъяснялось как будто загадочное свойство пушинки и камня падать в пустоте одинаково быстро.

Сведя тяготение к инерции, я так обрадовался, что взялся выдумывать способы технического изготовления разнообразных сил тяжести для спортивных целей. Предложил ускоряющиеся платформы-стадионы. Изобрел космическую олимпийскую карусель. Все шло ловко и гладко.

Но тут явился Маленький Принц и смешал карты.

Как это произошло?

Маленький Принц напомнил нечто очень важное: центральность сил тяготения. Земля притягивает к себе тела так, как если бы вся ее масса была сосредоточена в одной точке — в центре масс. И Солнце, и Луна, и любая планета, любая звезда. Потому-то и получился на планете Маленького Принца выпуклый стадион со строго одинаковым тяготением в разных точках. Да и на больших планетах, если уж быть пунктуально точным, стадионы со всюду равной тяжестью теоретически чуть- чуть выпуклы.

Однако никаким ускоренным движением невозможно создать в жесткой системе отсчета инерцию, обладающую этим же свойством. Как ни хитри, этого не добьешься. Инерцией можно разбросать тела в разные стороны по расходящимся линиям (на карусели), можно заставить их лететь или давить в параллельных направлениях (на ускоряющихся платформах). Можно устраивать вогнутые и прямые стадионы — пожалуйста, сколько угодно. Но устремить инерционное давление по линиям, сходящимся к какому-то центру, нельзя. Ведь для создания центростремительного тяготения жесткая система отсчета должна сразу ускоряться и «вперед», и «назад», и «вверх», и «вниз», и как угодно «вбок». Она должна вести себя по примеру ускоренно раздувающегося шара. Тела на таком стремительно растущем шаре станут не только давить «вниз», к центру, но и разбегаться в стороны. Но тогда он потеряет свою жесткость, разрушится, взорвется.

Между тем предметы на земной поверхности в стороны не разбегаются, Америка и Азия не рвутся в небеса, не разгоняются в противоположных направлениях.

Нет инерции, в точности повторяющей земное тяготение, — сразу все и надолго (раздувающийся ускоренно шар, правда, воспроизведет полное тяготение, существующее у земной поверхности, но лишь на бесконечно короткое время — пока его стремительно растущий радиус проскочит через величину, равную радиусу Земли).

Нет, значит, и инерции, которая ликвидировала бы земное тяготение — сразу все и надолго (падающий лифт, в котором пропадет все земное тяготение, должен охватывать планету и ускоренно лететь к ее центру, непрерывно сокращаясь в размерах, что не может, конечно, продлиться достаточно долго).

По этой причине буквально все наши примеры выглядят не вполне верными.

Та же Людмила, установи она безупречную параллельность отвесных линий, могла с уверенностью решить: я не на Земле. Потому что на Земле отвесные линии сходятся к центру планеты. Угол между ними не равен нулю.

Подобные измерения могли в принципе сделать и жуки-физики в мяче. А хладнокровный обитатель падающего лифта мог заметить странное поведение двух невесомых грузов, «неподвижно» парящих возле противоположных стенок кабины. По мере приближения лифта к центру Земли эти грузы сближались бы. У самого центра они стукнулись бы друг о друга.

Словом, Маленький Принц поставил под сомнение столь заманчивую, столь восхитившую нас эквивалентность инерции и тяжести? Доказал, что тяготение, благодаря его центральности, нельзя свести к инерции?

И да и нет.

От малого—к большому

Разумеется, Эйнштейн великолепно понимал возражения типа тех, что у нас прозвучали из уст Маленького Принца. Он понимал: выпуклый стадион с помощью инерции не устроишь. Сразу все, везде и надолго земное тяготение не устранишь падением. Он знал, что, вообще говоря, инерция и тяготение в старой, традиционной физике в любых масштабах не эквивалентны. И все- таки он провозгласил принцип эквивалентности!

Почему же? На каком основании? И для чего?

Отвечу сразу: ради создания новой физики, более общей и точной, чем прежняя.

Основания: все описанные выше мысленные и действительные опыты плюс оговорка, которую я раньше не приводил, ибо только теперь будет понятна ее важность. Оговорка такая: принцип эквивалентности инерции и тяготения справедлив для местных, или, по выражению Эйнштейна, локальных явлений.

Людмила в своей комнате на Цветном бульваре — явление сугубо местное. То, что где-то очень далеко, в шести тысячах километров над ней, есть центр тяжести планеты, не играло роли. Непараллельность отвесных линий зафиксировать опытом, может быть, и удастся (если эти линии отстоят в Людмилиной комнате на метр друг от друга, то угол между ними составит десятимиллионную долю угловой минуты), но поправка эта не изменит качества явления. В структурах полей сил инерции и тяготения обнаруживается чисто математическое различие, которое никак не сказывается на физической сущности и действии возникающих сил.

Локальное явление — и падающий лифт, если его ширина нормальна (не шире Черного моря), шахта хоть и глубока, но не пронизывает насквозь планету, и время падения не слишком велико. В обычном лифте, если он падает, тяжесть пропадает полностью. Принцип эквивалентности безусловно исполняется.

Даже крохотная планетка Маленького Принца (если она реальная, не сказочная) обязана создавать тяготение, строго согласное с принципом эквивалентности в достаточно малых, локальных масштабах. Малюсенький стадиончик (для футболистов-микробов) и на такой планетке будет иметь почти плоскую поверхность, а не выпуклую.

И его удастся в точности повторить, если воспользоваться услугами сил инерции.

Так всюду. Любое тяготение, несмотря на свою центральность, в локальных явлениях, в малых масштабах или коротких промежутках времени неотличимо от инерции. Соответствующую «малость» всегда можно подобрать, она совсем не обязательно ничтожна, она может быть и весьма крупной.

Этот факт универсален. Исключений нет. Следовательно, принцип локальной эквивалентности инерции и тяготения не должен вызывать возражений у физиков. А это открывает великолепные возможности для исследований.

Вот что надо выяснить.

Раз силы инерции и тяжесть едины в малом, то как они соотносятся в большом? Не вносит ли это какой- либо новой, неведомой ранее ученым, черты в физику нашего мира?

Искать ответы — значит погрузиться в дебри общей теории относительности. Что мы сейчас, набравшись храбрости, и сделаем. Вооружимся терпимостью к варварским упрощениям и постараемся постичь хотя бы самую суть этой труднейшей теории.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК