Глава 24. ПОЧЕМУ ПАДАЕТ КАМЕНЬ

Моллюск отсчета

Мой труженик-читатель, которому я искренне сочувствую и которого от души благодарю за то, что он добрался-таки до этой главы, наверное, устал. Поэтому остатки нашего книжного пути проследуем не торопясь. Честно говоря, тут надо бы сделать даже остановку, и длительную — лет этак на пять — десять, с тем чтобы засесть за учебники и проштудировать весьма сложный математический аппарат, без которого немыслимо уяснить количественные выводы эйнштейновской теории тяготения. Отказываясь от этого экскурса, мы обрекаем себя на очень приблизительное ее понимание.

Все же качественная сторона проблемы при вдумчивом и неспешном чтении нижеследующего может стать, мне кажется, вполне ясной рядовому девятикласснику. А то и восьмикласснику.

Собственно говоря, основное содержание эйнштейновских взглядов на природу тяготения вам уже известно (курсив на странице 232). Остаются подробности и тонкости.

Разберемся, какова в общей теории относительности судьба систем пространственно-временного отсчета.

Это знакомые нам «индивидуальные» аквариумы специальной теории, но они изменили строение и форму. Часы же, висевшие на каждом аквариуме, размножились в огромное число раз. Системы отсчета потеряли жесткость — стали гибкими, растяжимыми, ячеистыми. Вместо жесткого аквариума, вместо твердого трезубца пространственных координат, увенчанного единственными часами, появился, по выражению Эйнштейна, моллюск отсчета.

Вообразите мягкую каучуковую губку, которая невидима, неощутима. Она огромна — величиной со Вселенную, однако связана каким-то образом с телом, движущимся как угодно, и движется вместе с ним. Эта губка состоит из бесчисленных крошечных ячеек. Каждая ячейка — участочек прямого пространства и равномерного времени (для наблюдателя, движущегося вместе с этим участком). Еще лучше представить себе, что никаких ячеек нет — просто в бесконечно малом пространстве губка не имеет кривизны и темп времени в достаточно близких точках различается бесконечно мало. Но в крупных масштабах заметна пространственно-временная четырехмерная кривизна. И она от ячейки к ячейке, от точки к точке плавно меняется.

Вот это неевклидово пространство, привязанное к определенному движущемуся телу и заполненное (мысленно) множеством часов, идущих в плавно меняющемся темпе, и есть эйнштейновский моллюск. Трепетная, чуткая система отсчета. Состояние ее зависит от масс, распределения и движения вещества.

В таком моллюске и происходит реальное физическое движение. Оно изображается графиками мира событий— на четырехмерной диаграмме Минковского, которая тоже искривлена. Геодезическими линиями ее, тут прямыми, там изогнутыми, определяется движение по инерции планет, спутников, камней. В том числе и падение. Падение — только по инерции!

Соль тут заключается в следующем: отсутствует то, что мы привыкли называть силой тяготения. Камень не притягивается Землей. Он по инерции движется вдоль четырехмерной геодезической, а вблизи Земли эта геодезическая изогнута так, что «втыкается» в мировую линию поверхности планеты. И камень, летя с башни по инерции, падает на Землю.

Штаны для мира

Пока наши разговоры о моллюске отсчета, сменившем старый аквариум, не более, чем слова. Пока есть только изложение замысла. Реализовать замысел — значит указать, каков моллюск, каковы конкретно закономерности изменений его формы, как она зависит от заполняющего его движущегося вещества.

Поставив перед собой эту цель, Эйнштейн шел к ней долго, с исключительным упорством. Надо было влить математическое содержание в идею кривизны четырехмерной пространственно-временной диаграммы. Дать формулы для ее вычисления и, как следствие, для предсказания движений тел в реальном мире.

Отправным пунктом работы послужила общая математическая характеристика кривизны — не что иное, как усложненная и обобщенная форма хорошо знакомой нам теоремы Пифагора.

Напомню, что эта теорема — метрическая, то есть содержит в себе рецепт определения расстояний. На плоскости она имела простейший школьный вид:

S2 = а2 + b2

На искривленной поверхности изменилась: S2 стало не равно S2 = а2 + b2. Не стоит выписывать измененной формы этой теоремы. Скажу лишь, что для определения квадрата расстояния на любой искривленной поверхности а2 и b2 надо на что-то умножить да еще в формуле появится член с произведением а на b. (Тут к тому же а и b будут бесконечно малыми величинами.) Аналогично изменится вид трехмерной теоремы Пифагора в изогнутом трехмерном пространстве.

А в мире Минковского? На четырехмерной диаграмме быстрых движений?

Эта диаграмма строилась на основе постулатов Эйнштейна. В результате на ней отобразилась связь пространства и времени: появились гиперболические калибровочные линии, отсекающие на разных осях разные масштабы длин и длительностей. Это определило выражение для квадрата интервала (то есть, опять напоминаю, расстояния между двумя событиями в четырехмерном пространственно-временном мире). В двенадцатой главе оно было записано так: S2 = l2 – c2t2. Расшифровав по «прямой» пространственной теореме Пифагора l2 как сумму х2 + у2 + z2, получим:

S2 = х2 + y2 + z2 — c2t2.

Очень похоже на теорему Пифагора, только четвертое слагаемое отрицательно. Но от этого можно избавиться. Ради симметрии сделаем замену: вместо -c2t2 будем писать ?2. Тогда сходство, во всяком случае по математической форме, будет полным.

Таково метрическое правило для измерения интервала на диаграмме частной теории и относительности — без учета тяготеющих масс. Тут мир не имеет кривизны.

Ну, а в искривленном мире выражение интервала усложнится — подобно тому, как усложнилась теорема Пифагора на шаре или седле. Каждый член правой части формулы на что-то умножится, появятся члены с произведениями ху, хz и т. д. Что же получится?

Дабы подчеркнуть неравномерную кривизну мира, все отсчеты снабдим значком ? (дельта) — это будет означать, что измерения ведутся в достаточно малой области мира, где кривизна его остается постоянной. И тогда (поверьте на слово) интервал между двумя близкими событиями в искривленном мире пространства — времени будет выглядеть так:

?S2 = g11?x2 + g22?y2 + g33?z2 +g44??2 + 2g12?x?y + 2g13?x?z + 2g14?x?? + 2g23?y?z + 2g24?y?? + 2g34?z??

Множители g, снабженные парой индексов (от 1 до 4), — коэффициенты кривизны. Их всего десять. От них-то, в конечном итоге, и зависит искривление мира. А сами они зависят от масс и расстояний до окружающих тел.

Написанное выражение носит громкий и почетный титул — фундаментальный метрический тензор. Отметив музыкальную звучность термина, воздержимся от расшифровки его смысла (это чистая математика). По существу, здесь не что иное, как усложнение и обобщение «покроя» школьных «пифагоровых штанов» на случай искривленного четырехмерного мира, диаграммы движения в эйнштейновском моллюске отсчета.

В далекой от звезд и планет пустоте при равномерном движении моллюск обращается в аквариум и никакой кривизны мира нет. Фундаментальный метрический тензор становится интервалом специальной теории относительности. В этом случае (при обратной замене ?2 на —c2t2) g11 = g22 = g33 =1, g44 =-c2, a g12 = g13 = g14 = g23 = g24 = g34 =0

Там же, где нет вокруг полной пустоты, где сравнительно недалеки звезды и планеты, должны иметь место отклонения от этих «нормальных» значений метрических коэффициентов.

Эллиптическая кривизна

Следующий шаг — разгадка математической зависимости между метрическими коэффициентами и массами движущегося вещества.

Шаг труднейший.

Коэффициентов — десять. Значит, нужно написать систему из десяти уравнений, связывающих эти коэффициенты с массой и расстояниями от точки наблюдения до окружающих тел.

Гений и труд Эйнштейна отыскали эту систему — систему мировых уравнений.

Нам с вами не стоит даже пытаться разбирать логику вывода и выписывать уравнения. Удовлетворимся сообщением, что они существуют.

Еще сложнее и тоньше дальнейшая работа — решение системы мировых уравнений. Тут Эйнштейн и его последователи столкнулись с трудностями поистине титаническими. До нашего времени задача полностью не решена. Добыты только отдельные частные решения, годные лишь ограниченно, при всевозможных упрощениях.

Тем не менее результаты огромны: создана математическая теория тяготения, в которой действительно нет, как таковой, силы тяготения! Есть только силы инерции.

Грубо говоря, дело обстоит следующим образом.

Удалось выяснить, как именно отклоняются от «нормы далекой пустоты» метрические коэффициенты мира около тяжелого тела — например, Земли. На этом материале был установлен «околоземной вариант» фундаментального метрического тензора, то есть, другими словами, характеристика кривизны пространства — времени.

Оказалось, что геометрия тут эллиптическая (вроде геометрии поверхности яйца, но только, конечно, четырехмерная, да еще такая, что геодезические линии служат не кратчайшими, как на яйце, а длиннейшими расстояниями. Причем с приближением к центру Земли кривизна мира увеличивается (кривизна поверхности яйца увеличивается с приближением к его «острым углам»). И увеличение кривизны мира означает очень малое замедление времени и сокращение расстояний.

Отсюда попробуем представить себе ход геодезических линий, этих прямейших длиннейших путей, «рельсов» инерционного движения тел на диаграмме искривленного пространства — времени.

Во-первых, все геодезические сходятся, вроде меридианов на глобусе.

Во-вторых, кривизна их тем больше, чем больше кривизна мира.

Не забывайте, что речь идет о мире-диаграмме, построенном по правилам Эйнштейна, что одно из его измерений — время — может только возрастать. Поэтому геодезические линии, обладая наибольшей прямизной и наибольшей длиной, имеют, кроме того, направление — устремлены в сторону возрастания времени. Тела движутся по ним из прошлого в будущее, но не наоборот. Так вода в реке обязательно течет сверху вниз.

Разумеется, вообразить все это вместе и сразу непросто. Попытаемся все же применить сказанное к поведению камня, находящегося около Земли.

Камень выпущен

И вот пробил торжественный час исполнить давнее, много раз повторенное обещание: окончательно объяснить чудо падения камня на Землю.

Включите мысленно духовой оркестр — и, пожалуй, сразу выключите, чтобы не мешал.

Внимание!

У меня в руке камень. Внизу — Земля.

Будем считать, что в пространстве Земля стоит на месте (движением ее вокруг Солнца пренебрежем, как и прочими астрономическими движениями). Но во времени она движется. Она мчится в будущее. И камень мчится в будущее. И я тоже. Этим бесспорным фактом удобно воспользоваться для объяснений.

Земля не испытывает никаких сил (о Солнце пока совсем забудем), то есть находится во власти одной только инерции. Можно сказать: Земля по инерции движется в будущее.

А камень испытывает действие силы — он удерживается моей рукой.

Я разжимаю пальцы — дарю камню свободу, избавляю его от действия силы. И (внимание!) давайте теперь вообще забудем о таком понятии, как сила тяготения. Пусть камень, как и Земля, остался во власти одной лишь инерции.

Что ж, тогда и камень полетит по инерции в будущее.

Будь Земля бесплотна, лишена массы, мир вокруг нее не был бы искривлен и геодезическая линия освобожденного камня была бы совершенно прямой. Не получив толчка, камень благодаря инерции хранил бы покой в пространстве, передвигаясь только во времени, — спокойно висел бы возле моей разжатой руки. Обо мне можно было бы сказать то же самое. Я и камень мчались бы в будущее вместе, по соседним строго прямым и параллельным геодезическим линиям, все время находясь в относительной неподвижности. Никакого падения не случилось бы.

Но в действительности Земля отнюдь не бесплотна. Мир искривлен ее гигантской массой. Поэтому я и камень неравноправны. Я испытываю действие силы — пол давит на мои подошвы, не позволяя мне «провалиться сквозь землю». Другими словами, меня все время «насильно» сдвигают с моей геодезической линии и держат на мировой линии, параллельной геодезической линии центра планеты.

А камень по-прежнему свободен. На него ничто не давит. Он и теперь путешествует в будущее по своей геодезической линии.

Но на этот раз она изогнута, потому что мир искривлен.

Правда, пространство — время деформированы так мало, что и геодезические изогнуты совсем незначительно. В первые мгновения свободы камня его геодезическая линия почти совпадает с моей мировой линией, и камень почти неподвижен относительно моей ладони. Но бег во времени стремителен. За микросекунды «путешествия в будущее» геодезическая линия камня чуть отходит от моей мировой линии. Поэтому камень, мчась вместе со мной во времени, неизбежно набирает скорость и смещается относительно меня в пространстве. С каждым мгновением скорость и пространственное смещение камня больше, потому что его геодезическая линия все круче отклоняется от моей мировой линии.

Саму кривизну мира я не замечаю, как и ее увеличения: замедление секунд и сокращение сантиметров слишком незначительны. Не чувствую я и того, как вместе с камнем и Землей мчусь в будущее: этого «полета» ведь на самом деле нет, он лишь условность, привлеченная для удобства объяснений. Поэтому движение камня по геодезической линии возле Земли предстает передо мной в явлении зримом и привычном: ускоренном движении камня к центру планеты.

Так на моих глазах совершается чудо падения.

Если бы я зажал в кулаке камень и песчинку, а потом одновременно отпустил их, и песчинка и камень опять полетели бы в будущее по инерции, не отставая друг от друга, ибо следовали по одной и той же геодезической. И, конечно, одновременно столкнулись бы с земной поверхностью.

Никаких сил тяготения, действующих «через пустоту», как видите, не понадобилось. Не потребовалось никаких невидимых нитей и резинок между Землей и камнем. И все-таки падение состоялось. В точном согласии с давнишним наблюдением Галилея.

Прыжки мяча

Ради большей ясности сейчас будут повторения сказанного в видоизмененных вариантах и пояснения с помощью упрощенных диаграмм.

Начало координат мира пространства — времени устанавливаем на камне в момент времени t = 0. Пространство принимаем одномерным, то есть учитываем единственное пространственное измерение — ось х (ее направим вниз, не рисуя). Где-то на ней центр масс и начало мировой линии Земли. Диаграмма ньютоновского мира в этом случае такова:

Ось времени — прямая как стрела. Мировая линия камня согнута. Черными стрелками изображена сила тяготения, без нее в классике не обойтись.

А вот диаграмма той же последовательности событий с точки зрения Эйнштейна — Минковского:

Ось времени камня пригнулась к мировой линии Земли. И не требуется никаких сил тяготения.

Конечно, камень не обязательно просто ронять. Его можно как угодно подбросить. И система отсчета может как угодно двигаться относительно Земли и камня. Все равно он будет лететь по инерции вдоль осей времени или геодезических линий мира, искривленного массой планеты. С точки зрения старой механики Ньютона, это представится движением под действием силы тяжести.

Вот, например, график движения мяча, который сначала был отпущен с полуметровой высоты, упал, ударился о землю, подпрыгнул вертикально вверх и т. д.

В каждом прыжке мяч находился примерно секунду. За это время в пространстве он пролетал метр. А во времени?

На диаграмме Минковского масштаб времени множится на скорость света, то есть каждая секунда приравнивается к тремстам тысячам «километров». Такой гигантский «путь во времени» и проделал наш мяч, пока прыгал на полметра вверх и вниз в пространстве. Отклонение геодезической линии мяча от евклидовой прямой, таким образом, составляло на диаграмме пять десятитысячных долей сантиметра на «километр времени».

Повторю еще раз: разумеется, никакого «километра времени» на самом деле нет—он есть только на графике движения, где время, ради формального удобства, выражается в единицах длины.

Но цифра, которую мы выудили из графика Минковского, хорошо демонстрирует ничтожность искривления диаграммы мира массой Земли у ее поверхности. И именно эта неуловимо крошечная кривизна пространства — времени полностью объясняет зримое, весомое, ежеминутно творящееся на наших глазах чудо падения. Фигурально выражаясь, происходит оно потому, что уж очень быстро мы и все окружающее мчимся в будущее. Масштаб на оси времени диаграммы множится на скорость света! Поэтому несмотря на малость деформации пространства — времени микроскопическое искривление четырехмерной геодезической линии движения мяча мгновенно накапливается в величину заметную и ощутимую.

Вот одно не очень удачное сравнение.

Я смотрю из идущего поезда на тележку, катящуюся рядом по колее, которая круто сворачивает к колее поезда. Пусть я не чувствую, что движусь, что мчится вперед тележка, не замечаю рельсов. Я вижу одно: тележка ускоренно приближается. «Падает» на поезд!

Аналогия, правда, неточная: поступательный ход поезда и тележки уподобляется бегу во времени, а это условность.

Вообще надо помнить: наш реальный мир — не диаграмма. Условная четырехмерность мира — лишь математический прием, позволяющий «начертить» то, что время и пространство связаны и подчинены влиянию вещества.

Вес—сила инерции

Еще одно замечание — про вес. Что же такое тяжесть камня, если нет дальнодействующей, «проникающей сквозь пустоту», «таинственной», «божественной» силы тяготения?

В самом начале этой книжки мы с вами предположили: тяжесть есть давление камня на опору, и только.

Теперь это предположение подтверждается: вес предстает перед нами как давление камня на опору, которая не дает ему двигаться свободно по геодезической линии.

Другими словами, вес — не что иное, как сила инерции. Подобной силой действовал бегун на дорожку стадиона олимпийской карусели или похищенная Людмила — на пол ускорявшейся ракеты Черномора.

А теперь я сижу и силой инерции давлю на стул, который не позволяет мне по инерции улететь к центру планеты. И яблоко прикладывает силу инерции к ветке яблони, на которой висит. Знал бы это Ньютон!

Видите: благодаря открытой Эйнштейном кривизне пространства — времени сила тяжести сведена к силам инерции в совершенно земных, совсем не фантастических событиях.

И этот факт, честное слово, удивительнее самой экзотической литературной небывальщины.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК