Глава 2. “Батрак патентного бюро”

We use cookies. Read the Privacy and Cookie Policy

Глава 2.

“Батрак патентного бюро”

Пятница, 17 марта 1905 года, Берн. Около восьми утра перед уходом на службу молодой человек в необычном клетчатом костюме запечатал конверт. На прохожих Альберт Эйнштейн производил впечатление человека, забывшего, выходя из дома, снять старые зеленые тапочки с вышитыми цветочками1. Шесть раз в неделю он, оставив жену и маленького сына Ганса Альберта, выходил из небольшой двухкомнатной квартиры в живописном квартале Старого города и направлялся к массивному кирпичному зданию в десяти минутах ходьбы. Мощенная камнем улица Крамгассе со знаменитой Часовой башней и аркадами с обеих сторон — одна из самых красивых в швейцарской столице. Но погруженный в свои мысли Эйнштейн шагал к главному зданию Федерального почтово-телеграфного ведомства, вряд ли замечая что-либо вокруг. Он поднимался по лестнице на третий этаж, где находилось Федеральное ведомство интеллектуальной собственности — Швейцарское бюро патентов. Здесь Эйнштейн и дюжина других технических экспертов — мужчин, одетых в более строгие темные костюмы, — по восемь часов в день занимались отделением зерна от плевел.

Тремя днями ранее Эйнштейну исполнилось двадцать шесть лет. Уже почти три года он был “батраком патентного бюро”2. Служба стала для него избавлением от “надоедливого чувства голода”3. Сама работа ему нравилась: она не надоедала, требовала умения “разносторонне мыслить”, а атмосфера в конторе была дружелюбной и успокаивающей. Позже Эйнштейн говорил об этом месте как о “светском монастыре”. Хотя должность технического эксперта III класса была весьма скромной, работа хорошо оплачивалась и оставляла достаточно времени для занятий. Несмотря на бдительный надзор начальника, грозного Фридриха Галлера, в промежутках между изучением патентов Эйнштейну удавалось выкраивать время для своих расчетов, так что его рабочий стол постепенно превратился в “кабинет теоретической физики”4.

“Казалось, земля уходит из-под ног и нигде не видно прочной основы, на которую можно было бы опереться”, — так вспоминал Эйнштейн о том, что он почувствовал, прочтя опубликованное незадолго до того решение Планка задачи об излучении абсолютно черного тела5. В конверте, отправленном Эйнштейном 17 марта 1905 года редактору самого известного в мире физического журнала “Аннален дер физик”, находилась статья, суть которой была еще более радикальна, чем послужившая для нее отправной точкой идея Планка о существовании квантов. Эйнштейн знал, что его квантовая теория света — не что иное, как ересь.

Двумя месяцами позднее, в середине мая, Эйнштейн писал своему другу Конраду Габихту, что собирается сдать в печать четыре статьи, которые, как он надеется, до конца года будут опубликованы. Первая работа была посвящена квантам. Вторая — это его диссертация на степень доктора философии, в которой Эйнштейн предлагал новый способ определения размеров атомов. Третья статья объясняла природу броуновского движения — хаотического движения крошечных, похожих на цветочную пыльцу частичек, взвешенных в жидкости. О четвертой Эйнштейн писал: “Пока есть только предварительный план статьи. В ней рассматривается электродинамика движущихся тел, для построения которой требуется изменить теорию пространства и времени”6. Это поразительный список. В анналах науки есть лишь один ученый, которого можно сравнить с Эйнштейном в 1905 году, и только один год, когда работы этого ученого можно сравнить с работами Эйнштейна за 1905 год. Его имя — Исаак Ньютон. В 1666 году этот двадцатитрехлетний англичанин заложил основы математического анализа и теории гравитации. В это же время он начал работать над теорией света.

Вскоре имя Эйнштейна станет синонимом слова “относительность”, обозначающим теорию, общие контуры которой впервые появились в четвертой его работе 1905 года. Хотя относительность изменила представление людей о природе пространства и времени, именно развитие идеи Планка и вывод о квантовой природе света и излучения Эйнштейн называл “истинно революционными”7. Он считал теорию относительности просто “модификацией” представлений, уже сформулированных и обоснованных Ньютоном и многими другими учеными. А введенные им кванты света были чем-то абсолютно новым, принадлежащим только ему. Это был полный разрыв с физикой прошлого, воспринимавшийся как кощунство даже самим физиком-самоучкой.

Уже более полувека всеми было признано, что свет — это волна. В работе “Об одной эвристической точке зрения, касающейся возникновения и превращения света”, Эйнштейн выдвинул идею о том, что свет состоит не из волн, а из похожих на частицы квантов. При решении задачи об абсолютно черном теле Планку против его желания пришлось предположить, что энергия поглощается или испускается дискретными порциями. Однако он, как и другие, считал, что, несмотря на то, как происходит обмен энергией между излучением и материей, само электромагнитное излучение представляет собой непрерывный волновой процесс. Революционная точка зрения Эйнштейна состояла в том, что свет, как и любое электромагнитное излучение, не похож на волну, а представляет собой набор маленьких частиц — квантов света. В следующие двадцать лет почти никто, кроме Эйнштейна, в кванты света не верил.

Эйнштейн знал, что ему предстоит нелегкая борьба. Это видно уже из того, что в названии статьи он написал: “Об одной эвристической точке зрения...”. Словарь определяет “эвристику” как “совокупность логических приемов и методических правил теоретического исследования”. Физикам предлагался метод, с помощью которого можно было объяснить остававшиеся непонятыми места в теории света, но не окончательная теория, построенная исходя из первых принципов. Статья Эйнштейна стала первой вехой на пути построения такой теории. Но и это оказалось чересчур для тех, кто совершенно не был готов отказываться от давно устоявшейся волновой теории света.

Четыре работы Эйнштейна, полученные редакцией “Аннален дер физик” между 18 марта и 30 июня 1905 года, определили направление развития физики на много лет вперед. Примечательно, что у Эйнштейна еще нашлось время написать двадцать одну книжную рецензию для этого журнала. И вдобавок в том же году им была задумана пятая работа, о которой он Габихту не сказал. Одно из уравнений в этой работе известно, вероятно, всем: E = mc2. “У меня в голове бушевал ураган”, — так Эйнштейн описывал творческий порыв, охвативший его триумфальной весной и летом 1905 года в Берне, когда были написаны эти поразительные работы8.

Макс Планк, референт журнала “Аннален дер физик” по вопросам теории, одним из первых прочитал “К электродинамике движущихся тел”. Планк сразу оценил статью. Позднее термин “теория относительности” ввел именно он, а не Эйнштейн. Что же касается квантов света, то Планк, хотя и не был полностью согласен с этой идеей, одобрил публикацию работы. Он, по-видимому, думал, что своеобразие автора этих статей заключается как раз в том, что он способен совершить как нечто очень значительное, так и нечто абсолютно смехотворное.

“Жители Ульма — математики”, — такая присказка бытовала в Средние века в небольшом городе на берегу Дуная на юго-западе Германии. Здесь 14 марта 1879 года родился Альберт Эйнштейн, человек, имя которого станет синонимом слов “научный гений”. При рождении голова ребенка была настолько велика и деформирована, что мать волновалась: ее новорожденный сын — калека. Он так долго не говорил, что родители начали опасаться, что Альберт не заговорит вообще. Вскоре после рождения в ноябре 1881 года сестры Майи (других братьев и сестер у него не было) Эйнштейн приобрел довольно странную привычку: он тихонько повторял каждое предложение, которое хотел сказать, до тех пор, пока ему не удавалось сделать это хорошо, и только затем произносил его вслух. Говорить нормально мальчик, к большому облегчению его родителей Германа и Паулины, начал лишь в семилетием возрасте. К этому времени семья уже шесть лет жила в Мюнхене, где отец Эйнштейна и его дядя Якоб открыли электромеханическую мастерскую.

К октябрю 1885 года, когда шестилетнему Эйнштейну пора было идти в школу, частных еврейских школ в Мюнхене не существовало уже более десяти лет, так что мальчика отправили в ближайшее к дому учебное заведение. В Мюнхене, самом сердце католической Германии, религиозное обучение было обязательной частью программы. Но, как вспоминал много лет спустя Эйнштейн, “учителя в школе были либералами и не делали различий между конфессиями”9. Как бы, однако, либеральны и внимательны ни были преподаватели, антисемитизм, проникший во все поры немецкого общества, чувствовался и в школе. Эйнштейн навсегда запомнил урок катехизиса, где учитель закона Божьего рассказывал, как евреи распяли Христа, и говорил, что “антисемитизм жив, особенно среди учеников начальной школы”10. Неудивительно, что у мальчика было мало друзей (а может, и вообще не было). “Я одинокий путник. У меня никогда не было страны, дома, друзей, даже собственной семьи, которую я любил бы всем сердцем”, — писал Эйнштейн в 1930 году. Он называл себя Eispanner, мизантропом.

Школьником Эйнштейн предпочитал одиночество. Его любимым занятием было строить карточные домики. У него хватало терпения доводить их до четырнадцати этажей. Упорство вообще было одной из главных черт характера Эйнштейна. Позднее оно позволило ему следовать намеченным курсом даже тогда, когда другие давно бы сдались. “Господь наградил меня упорством мула, — скажет он позднее, — и достаточно острым нюхом”11. Хотя никто с этим и не соглашался, но, по утверждению самого Эйнштейна, у него не было других талантов, кроме страстного любопытства. Любопытные люди — не редкость, но поскольку он был еще и упрям, то продолжал искать ответы на почти детские вопросы даже тогда, когда его сверстники уже научились попросту не задавать их. Как можно представить себе прогулку верхом на луче света? Этот вопрос знаменовал начало занявшего десять лет пути, который привел к теории относительности.

В 1888 году в возрасте девяти лет Эйнштейн поступил в мюнхенскую гимназию Луитпольда. Он с горечью вспоминал о проведенных там днях. Если молодому Максу Планку военная дисциплина нравилась и помогала учиться, то Эйнштейну она не подходила. И все же, несмотря на недовольство учителями и авторитарными методами преподавания, он превосходно успевал, хотя в гимназии изучались главным образом гуманитарные предметы. Даже после того, как один из учителей заявил, что “из него никогда ничего не выйдет”12, Эйнштейн получил высший балл по латыни и добился успехов в греческом.

Полным контрастом школьной зубрежке и частным домашним урокам музыки было общение с нищим польским студентом-медиком Максом Талмудом. Максу был двадцать один год, а Альберту — десять, когда тот стал приходить к Эйнштейнам на обед. Это было выполнением старой еврейской заповеди: в день отдохновения, шаббат, приглашать на обед бедных молодых людей, изучающих Тору. Талмуд сразу почувствовал родственную душу в любознательном мальчике. Очень скоро эти двое завели привычку долгие часы обсуждать книги, которые Талмуд давал или рекомендовал Альберту. Они начали с научно-популярных изданий, и вскоре Эйнштейн покинул, как он позднее сам говорил, “религиозный рай моей юности”13.

Годы, проведенные в католической школе, и беседы с одним из родственников об иудаизме сделали свое дело. К удивлению светских родителей, у мальчика появилось, по его собственным словам, “пылкое религиозное чувство”. Он перестал есть свинину, по дороге в школу распевал религиозные гимны, а библейский рассказ о сотворении мира считал установленным фактом. Но затем, жадно проглотив огромное количество научно-популярных книг, он понял, что многие библейские истории не могут быть правдивыми. Результатом стало “фантастическое свободомыслие, соединяющееся с убеждением, что с помощью лжи государство намеренно обманывает молодежь; это было очень тяжелое переживание”14, но оно принесло свои плоды. У Эйнштейна появилось сохранившееся на всю жизнь недоверие к власти в любом ее проявлении. Он пришел к выводу, что потеря “религиозного рая” — первый шаг к освобождению от “пут ‘исключительно личного’, от существования, в котором доминируют желания, надежды и примитивные чувства”15.

Утративший веру в Священное писание Альберт заинтересовался другой божественной книгой: учебником геометрии. Он был еще учеником начальной школы, когда дядя Якоб объяснил ему основы алгебры и стал предлагать разные задачи. Когда Талмуд вручил двенадцатилетнему Эйнштейну книгу о евклидовой геометрии, тот уже знал математику лучше любого своего сверстника. Талмуд был поражен быстротой, с которой Альберт усвоил прочитанное, доказав все теоремы и выполнив все упражнения. Рвение мальчика было таким, что за время летних каникул он прошел весь школьный курс математики за следующий год.

Отец и дядя Эйнштейна были инженерами-электриками, поэтому мальчика, читавшего книги по физике, окружали физические приборы. Именно отец ненароком познакомил маленького Альберта с чудесами и тайнами науки. Однажды, когда простуженный сын лежал в постели, Герман показал ему компас. Движение стрелки поразило пятилетнего малыша. Он похолодел от мысли, что “вещи, должно быть, что-то скрывают, какую-то глубоко запрятанную тайну”16.

Сначала электромеханическая мастерская братьев Эйнштейн процветала. Они начали с изготовления электроприборов, а после перешли к установке энергосистем и осветительных сетей. Эйнштейны праздновали одну победу за другой, и будущее казалось им прекрасным. Им даже удалось получить подряд на освещение знаменитого мюнхенского Октоберфеста17. Электрические лампочки использовались во время этого праздника впервые. Но в конце концов братья не выдержали конкуренции с такими гигантами, как “Сименс” и АЭГ. Многие маленькие мастерские успешно развивались и даже процветали в их тени, но чтобы попасть в их число, Якоб был слишком самолюбив, а Герман — нерешителен. Побежденные, но не сдавшиеся братья решили, что Италия, где электрификация только начиналась, — это лучшее место для того, чтобы начать сначала. В июне 1894 года Эйнштейны перебрались в Милан — все, кроме пятнадцатилетнего Альберта. В опостылевшей школе ему следовало провести еще три года, и он остался в Мюнхене на попечении дальних родственников.

Ради родителей он притворялся, что в Мюнхене у него все в порядке. Однако на самом деле юноша все время нервничал из-за надвигающегося призыва. В соответствии с немецким законом, если он останется в стране до своего семнадцатилетия, то будет вынужден пойти на военную службу — либо его объявят дезертиром. Одинокий и подавленный, Эйнштейн пытался найти выход. И неожиданно он понял, что следует предпринять.

Дегенхарт, тот самый учитель греческого, который считал, что из Эйнштейна ничего не выйдет, теперь стал его классным наставником. Однажды в пылу спора Дегенхарт заявил, что Эйнштейн должен покинуть школу. Не дожидаясь дальнейших советов, Альберт так и поступил. Он добыл медицинскую справку о том, что страдает нервным истощением и для выздоровления нуждается в покое. Одновременно Эйнштейн заручился рекомендательным письмом своего учителя математики, в котором говорилось, что по этому предмету он прошел весь гимназический курс. Юноше потребовалось шесть месяцев, чтобы воссоединиться с семьей в Италии.

Родители старались урезонить упрямца, но Эйнштейн отказывался вернуться в Мюнхен. У него были другие планы: остаться в Милане и подготовиться к октябрьским вступительным экзаменам в Федеральный политехнический институт в Цюрихе. Основанный в 1854 году и переименованный в 1911 году в Федеральную высшую техническую школу Политехникум, или Поли, был не настолько престижным, как ведущие университеты Германии. А главное, для поступления туда не требовалось свидетельство об окончании гимназии. Как он объяснил родителям, надо только выдержать вступительные экзамены.

Скоро им стала ясна и вторая часть сыновнего плана. Чтобы полностью исключить возможность быть призванным Рейхом на военную службу, Альберт хотел отказаться от немецкого гражданства. Поскольку он был слишком молод для того, чтобы сделать это самостоятельно, требовалось согласие отца. Герман не возражал и от имени сына обратился к властям. В январе 1896 года была получена стоившая три марки справка, подтверждающая, что Альберт Эйнштейн более не является германским подданным. Согласно закону, следующие пять лет — до того, как стать гражданином Швейцарии, — он считался человеком без гражданства. Эйнштейн всю жизнь оставался пацифистом, но, приобретя новое гражданство, 13 марта 1901 года (за день до своего двадцать второго дня рождения) был вынужден пройти медицинское освидетельствование: им интересовалась швейцарская армия. К счастью, из-за плоскостопия и варикозного расширения вен призыва Эйнштейн избежал18. В Мюнхене юношу тревожила не столько мысль об армейской службе как таковой, сколько необходимость надеть серую военную форму и присягнуть Рейху, который он ненавидел.

“Как самое дорогое, я вспоминаю месяцы, проведенные в Италии”, — спустя полвека описывал Эйнштейн свое тогдашнее беззаботное существование19. Он помогал отцу и дяде в мастерской, а также путешествовал, навещая друзей и родственников. Весной 1895 года семья переехала в Павию, где братья открыли новую фабрику, просуществовавшую чуть больше года. В это время Альберт усердно готовился к вступительным экзаменам в “Поли”. И хотя экзамены он провалил, его результаты по физике и математике были настолько впечатляющими, что профессор физики пригласил его посещать свои лекции. Это было очень заманчивое предложение, но Эйнштейн внял разумному совету директора “Поли”. В связи с полным провалом по истории, языкам и литературе тот предложил молодому человеку еще на год вернуться за парту и рекомендовал одну из швейцарских школ.

В конце октября Эйнштейн уже был в Аарау, городке в тридцати милях западнее Цюриха. Либеральный дух здешней кантональной школы позволил Эйнштейну проявить себя. Жизнь в семье учителя классических языков, у которого он поселился, оставила в его памяти неизгладимый след. Йост Винтелер и его жена Паулина поощряли свободомыслие трех своих дочерей и четырех сыновей. Совместные обеды были веселыми и шумными. Очень скоро Эйнштейн стал относиться к Винтелерам, как к приемным родителям. Он даже называл их “папаша Винтелер” и “мамаша Винтелер”. Хотя в старости Эйнштейн и говорил, что он — одинокий путник, ему нужны были люди, которые заботились бы о нем, а он — о них.

В сентябре 1896 года подошла пора вступительных экзаменов. Эйнштейн легко сдал их и уехал в Цюрих, в Политехникум20.

“Счастливый человек слишком удовлетворен настоящим, чтобы задумываться о будущем”, — таково начало короткого эссе “Мои планы на будущее”, написанного Эйнштейном во время двухчасового экзамена по французскому языку. Имея склонность к абстрактному мышлению и не имея никакого практического опыта, он решил, что станет учителем математики и физики21. В октябре 1896 года Эйнштейн оказался самым молодым из студентов педагогического факультета Политехникума, готовившего учителей точных наук. Всего пять человек решили специализироваться в преподавании математики и физики. Единственная среди них женщина стала женой Эйнштейна.

Никто из друзей Альберта не понимал, что влекло его к Милеве Марич. Сербка из Австро-Венгрии, четырьмя годами старше Эйнштейна. Переболевшая в детстве туберкулезом Милева слегка хромала. В течение первого года им прочли пять обязательных курсов по математике и механике и (по желанию) один курс по физике. Хотя в Мюнхене Эйнштейн зачитывался учебником геометрии, сейчас математика как таковая его не интересовала. Герман Минковский, профессор математики, вспоминал, что Эйнштейн был “отъявленным лентяем”. Но это объяснялось не апатией, а скорее неумением сразу ухватить суть. Эйнштейн признавался, что для него “именно осмысление основных физических принципов тесно связано с освоением самых сложных математических методов”22. Позднее, на тернистом пути к собственным открытиям он пожалел, что отсутствие усердия не позволило ему получить “приличное математическое образование”23.

К счастью, среди остальных трех студентов этого курса был Марсель Гроссман, учившийся лучше любого из них и разбиравшийся в математике. Именно к Гроссману обратился Эйнштейн, когда при построении математического аппарата общей теории относительности ему пришлось сражаться с очень трудными формулами. Эти двое разговаривали обо всем, “что только может интересовать молодых людей, которые смотрят на мир открытыми глазами”24, и очень скоро стали друзьями. Гроссман (всего на год старше своего друга) оказался проницательным человеком. Новый приятель настолько поразил его, что он привел его к себе домой и познакомил с родителями. “Однажды этот Эйнштейн, — заявил он им, — станет великим человеком”25.

Эйнштейн стал пропускать лекции, и в октябре 1898 года сдать экзамен ему удалось только благодаря великолепным конспектам Гроссмана. Дела пошли совсем по-другому, когда курс физики начал читать Генрих Фридрих Вебер. Эйнштейн “дождаться не мог следующей лекции”26. Вебер, которому было больше пятидесяти, умел живо излагать материал, и Эйнштейн признавал, что лекции по термодинамике он читал “мастерски”. Но, к сожалению, в курсе ничего не говорилось о теории магнетизма Максвелла и о других новейших результатах. Вскоре склонность Эйнштейна к независимости и пренебрежение к занятиям начали сказываться на его отношениях с профессорами. “Вы толковый молодой человек, — говорил ему Вебер, — но делаете большую ошибку: не позволяете научить вас чему-нибудь”27.

На выпускном экзамене в июле 1900 года Эйнштейн стал четвертым из пяти. Экзамены оказались для него настолько тяжелым испытанием и настолько лишили уверенности в себе, “что еще год он не мог даже подумать о том, чтобы взяться за решение какой-нибудь научной задачи”28. Милева была единственной, кто экзамен не сдал. Это был чувствительный удар для юноши и девушки, которые к тому времени уже нежно называли друг друга Johonzel (Джонни) и Doxerl (Долли). А дальше было вот что.

Эйнштейн больше не видел себя школьным учителем. После четырех лет жизни в Цюрихе у него родился новый честолюбивый замысел: стать физиком. Но даже для лучшего студента шансы получить постоянную работу в университете были мизерными. Первой ступенькой являлась должность ассистента одного из профессоров “Поли”, но никто не захотел с ним связываться. Тогда Эйнштейн стал искать место на стороне. “Скоро окажется, что я осчастливил своими предложениями всех физиков от берегов Северного моря до южной оконечности Италии”, — писал он Милеве в апреле 1901 года, когда она гостила у его родителей29.

Одним из “осчастливленных” был химик из университета в Лейпциге Вильгельм Фридрих Оствальд. Эйнштейн писал ему дважды, но оба письма остались без ответа. По-видимому, отец, терзавшийся при виде упавшего духом сына, сам, без ведома Альберта (Эйнштейн так об этом и не узнал) тоже написал Оствальду30: “Уважаемый господин профессор! Пожалуйста, простите отца, который осмелился обратиться к Вам по поводу своего сына. Все, кто может судить о его способностях, считают моего сына очень талантливым. В любом случае, смею заверить Вас, он необыкновенно любит науку, прилежен и предан своему делу”31. Это обращение осталось без ответа. (Позднее именно Оствальд первым выдвинет Эйнштейна на соискание Нобелевской премии.)

Впрочем, и антисемитизм мог сыграть свою роль. Эйнштейн был уверен, что именно плохая характеристика, данная Вебером, помешала ему получить место ассистента профессора. Он было совсем потерял надежду, но тут пришло письмо от Гроссмана с предложением подходящей и хорошо оплачиваемой работы. Гроссман-старший узнал о его бедственном положении и захотел помочь молодому человеку, которого так высоко ценил его сын. Он горячо порекомендовал Эйнштейна своему другу Фридриху Галлеру, директору бюро патентов в Берне, где имелась вакансия. “Когда я вчера получил твое письмо, — писал Эйнштейн Марселю, — оно тронуло меня верностью и человеколюбием, заставившими тебя не забыть старого неудачливого друга”32. К этому времени Эйнштейн, который целых пять лет был человеком без гражданства, стал гражданином Швейцарии. Он был уверен, что это поможет ему в поисках работы.

Может быть, судьба действительно сменила гнев на милость? Эйнштейну предложили временную работу в технической школе городка Винтертур примерно в двадцати милях от Цюриха. С утра у Эйнштейна было пять или шесть уроков, а во второй половине дня он был свободен и мог заниматься физикой. “Ты даже не представляешь, как я счастлив на этом месте! — писал он ‘папаше Винтелеру’ из Винтертура. — Я совершенно отказался от мысли получить место в университете, поскольку вижу, что даже так у меня достает силы и желания продолжать попытки заниматься наукой”33. Вскоре все перестало быть радужным: Милева объявила, что беременна.

Провалив экзамены во второй раз, Милева вернулась к родителям, чтобы дождаться рождения ребенка. Эйнштейн воспринял новость о том, что скоро станет отцом, спокойно. Ему уже приходило в голову сделаться страховым агентом, и теперь он торжественно пообещал взяться за любую, даже самую скромную работу, чтобы они смогли пожениться. Когда родилась дочь, Эйнштейн был в Берне. Он никогда не видел Лизерль. Что случилось с ней, удочерил ее кто-нибудь или она умерла в младенчестве, остается тайной.

В декабре 1901 Фридрих Галлер написал Эйнштейну, что он может предложить свои услуги патентному бюро34. Перед Рождеством заявление о приеме на работу было подано. Эйнштейну казалось, что окончились его бесконечные поиски постоянной работы. “Все время я строю самые радужные планы на будущее, — писал он Милеве. — Я уже говорил тебе, в каком достатке мы будем жить в Берне?”35 Уверенный, что очень быстро все образуется, Эйнштейн оставил работу учителя в частной школе-интернате в Шафгаузене. Он должен был проработать год, но уволился уже через несколько месяцев.

В Берне в то время жили около шестидесяти тысяч человек. Эйнштейн приехал в первую неделю февраля 1902 года. Со времен пожара, уничтожившего пятьсот лет назад половину Берна, атмосфера Старого города мало изменилась. Здесь, на Грехтиг-кайтгассе (Аллее правосудия), недалеко от знаменитого парка с медведями, Эйнштейн снял квартиру36. Она стоила всего двадцать три франка и, как он писал Милеве, “была просто большой красивой комнатой”37. Распаковав чемоданы, Эйнштейн отправился в редакцию газеты и поместил объявление с предложением своих услуг в качестве учителя математики и физики. Первый урок считался пробным и бесплатным. Объявление было напечатано 5 февраля, в среду, а уже через несколько дней потраченные на него деньги окупились. Один из учеников описывал своего нового учителя так: “Рост Эйнштейна сто семьдесят шесть сантиметров. Он широкоплеч, слегка сутулый. Его короткий череп кажется невероятно широким. Цвет лица матовый, смуглый. Над большим чувственным ртом узкие черные усы. Нос с легким орлиным изгибом. Глаза карие, светятся глубоко и мягко. Голос пленительный, как вибрирующий звук виолончели. Эйнштейн говорит довольно хорошо по-французски, с легким иностранным акцентом”38.

Молодой румынский еврей Морис Соловин наткнулся на объявление, читая газету на улице. Соловин, изучавший философию в Бернском университете, интересовался и физикой. Он считал, что недостаток математического образования мешает ему достаточно глубоко понимать эту науку. Потому, прочитав объявление, Соловин немедленно отправился по указанному адресу. Эйнштейн сразу почувствовал родственную душу. Ученик и учитель беседовали два часа. У них нашлось много общих интересов, и, проговорив еще полчаса на улице, они договорились увидеться на следующий день. Но когда ученик и учитель вновь встретились, настоящего урока не получилось: оба с энтузиазмом обсуждали волновавшие их вопросы. На третий день Эйнштейн заявил: “Собственно говоря, уроки физики вам не нужны”39. Они быстро подружились. В Эйнштейне Соловину больше всего нравилась его способность точно и понятно обрисовать поставленную задачу.

Вскоре Соловин предложил читать одни и те же книги, а потом обсуждать их. Когда Эйнштейн был еще школьником в Мюнхене, именно так они поступали с Максом Талмудом. Он решил, что это блестящая идея. Вскоре к ним присоединился Конрад Габихт. Приятель Эйнштейна по работе в школе-интернате в Шафгаузене, он переехал в Берн, чтобы в университете закончить диссертацию по математике. Эти трое, объединенные желанием учиться для собственного удовольствия и разбираться в сложных вопросах физики и философии, стали называть свой кружок “Академия ‘Олимпия’”.

Хотя Эйнштейн был рекомендован Галлеру его другом, тот сам хотел убедиться, что молодой человек справится с работой. Число патентных заявок на разнообразные электрические устройства росло, и надо было привлечь к работе не только инженеров, но и физика. Поэтому прием Эйнштейна на работу в бюро был насущной необходимостью, а не просто услугой другу. Молодой человек произвел на Галлера достаточно приятное впечатление, и он предложил ему временно занять должность технического эксперта III класса с годовым жалованием в три с половиной тысячи франков. В восемь часов утра 23 июня 1902 года Эйнштейн впервые отправился на работу, как “респектабельный федеральный бумагомаратель”40.

“Вы физик, — заявил ему Галлер, — а значит, ничего не смыслите в чертежах”41. О постоянной работе не могло и быть речи до тех пор, пока он не сможет их читать и оценивать. Галлер сам взялся научить Эйнштейна всему необходимому, включая искусство выражаться ясно, лаконично и корректно. Хотя тому никогда не нравилось, когда его поучали как школьника, было понятно, что у Галлера, которого он считал “чудесным человеком и светлой головой”42, следует перенять все, что только можно. “К его резкому тону быстро привыкаешь. Я его глубоко уважаю”, — писал Эйнштейн43. По мере обучения и сам Галлер научился ценить своего молодого протеже.

В октябре 1902 года отец Эйнштейна, которому было всего пятьдесят пять лет, серьезно заболел. Эйнштейн поехал в Италию повидаться с ним — как оказалось, в последний раз. Именно тогда Герман Эйнштейн дал согласие на брак Альберта и Милевы. До тех пор и он, и Паулина возражали против матримониальных планов сына. В январе следующего года в Берне Соловин и Габихт стали единственными гостями на гражданской церемонии заключения брака между Альбертом и Милевой. “Брак — это попытка создать нечто прочное и долговременное из случайного эпизода”, — заметит позднее Эйнштейн44. Но в 1903 году ему была нужна жена, которая готовила бы, убирала и смотрела за ним45. Милева же рассчитывала на нечто большее.

В бюро патентов Эйнштейн был занят сорок восемь часов в неделю. С понедельника по субботу он приходил на работу в восемь часов утра и трудился до полудня. Потом завтрак — дома или в соседнем кафе с друзьями. В контору надо было вернуться к двум. Он написал Габихту, что “кроме восьми часов работы остается восемь часов ежедневного безделья и сверх того воскресенье”46. Только в сентябре 1904 года Эйнштейн получил постоянную работу, а его жалованье выросло до четырех тысяч. А весной 1906 года Галлер, пораженный умением Эйнштейна “разбираться в самых сложных патентных заявках”, оценил его как “одного из наиболее высоко ценимых экспертов бюро”47. Эйнштейн получил повышение и стал техническим экспертом II класса.

“Я буду благодарен Галлеру до конца жизни”, — писал Эйнштейн Милеве сразу после переезда в Берн, ожидая место в бюро48. Свое обещание он выполнил. Но только много лет спустя он в полной мере оценил степень влияния на него Галлера и работы в бюро: “Может, я бы и не умер, но мой интеллектуальный рост застопорился бы”49. Галлер требовал, чтобы каждая патентная заявка оценивалась настолько строго, чтобы впоследствии ее нельзя было опротестовать юридически. “Вначале считайте, что в заявке все ошибочно, что изобретатель по меньшей мере жертва самообмана. Если же это окажется не так, внимательно следуйте за каждым поворотом его мысли, но не теряйте бдительности”, — наставлял Галлер Эйнштейна50. Так получилось, что Эйнштейн нашел работу, подходившую ему по темпераменту и позволившую проявить себя. И к занимавшим его физическим вопросам Эйнштейн относился с той же беспристрастностью, с какой оценивал помыслы и надежды изобретателей, часто построенные на зыбком песке сомнительных чертежей и неправильно выбранных технических условий. Умение всесторонне обдумывать вопрос, которому научила его эта работа, он считал “подлинно благословенным даром”51.

“У него была способность оценить значение того, что осталось незамеченным, фактов известных всем, но ускользнувших от их внимания, — вспоминал друг и соратник Эйнштейна, физик-теоретик Макс Борн. — Именно его сверхъестественная способность проникнуть в суть законов природы, а не владение математическим аппаратом, отличает его от всех нас”52. Эйнштейн знал, что не обладает достаточной математической интуицией, которая могла бы позволить ему отличить то, что на самом деле важно, от “всего остального, скрывающего только более или менее глубокую образованность”53. Но когда дело касалось физики, его чутье было безупречным. Эйнштейн как-то сказал, что “научился чуять то, что может касаться основ, и отвлекаться от всего остального, от множества вещей, загромождающих мозг и отвлекающих от самого главного”54.

Годы, проведенные в бюро, только обострили его чутье. Как и при работе с патентами, Эйнштейн искал слабые стороны, несогласованность в чертежах, по которым работает природа. Если в теории обнаруживалось противоречие, Эйнштейн пытался устранить его, добиться правильного понимания или, если сделать было ничего нельзя, предложить альтернативу. Его “эвристический” принцип, согласно которому в некоторых случаях свет ведет себя как поток частиц, был способом, который Эйнштейн предложил, чтобы разрешить противоречие, связанное с самыми основами физики.

Эйнштейну потребовалось много времени, чтобы согласиться с тем, что мир состоит из атомов и что эти дискретные разорванные частички материи обладают энергией. Например, энергия газа — сумма энергий отдельных составляющих его атомов. Но это ни в коей мере не касалось света. Согласно теории электромагнетизма Максвелла, да и любой волновой теории, световые лучи распространяются непрерывно, охватывая все большую область пространства, наподобие волн, расходящихся из точки на поверхности пруда, в которую попал камень. Эйнштейн видел в этом глубокое формальное различие. Оно его беспокоило, но, с другой стороны, стимулировало желание всесторонне обдумать вопрос55. Он понял, что дихотомию между прерывностью материи и непрерывностью электромагнитной волны можно устранить, если предположить, что свет тоже состоит из квантов56.

О квантах света Эйнштейн задумался после того, как перепроверил выведенную Планком формулу для спектра излучения абсолютно черного тела. Он согласился с тем, что эта формула верна, но, анализируя способ, которым она была получена, Эйнштейн заподозрил неладное. Планк должен был получить совсем иную формулу, однако он знал, какой эта формула должна быть, и построил свой вывод так, чтобы получить именно ее. Эйнштейн точно определил место, где Планк сбился с пути. В отчаянной попытке обосновать свое уравнение (которое, он знал, прекрасно согласуется с экспериментом) ему не удалось применить последовательно физические представления и методы расчета, имевшиеся в его распоряжении. Эйнштейну стало ясно, что если бы Планк это сделал, он получил бы уравнение, совершенно не согласующееся с экспериментом.

В июне 1900 года лорд Рэлей уже предложил формулу, которую должен был бы получить Планк, но тот либо не придал ей значения, либо вообще не заметил. Тогда он еще не верил в существование атомов и поэтому не мог согласиться с тем, что Рэлей использовал теорему о равнораспределении. Атомы могут двигаться только тремя способами: вверх и вниз, туда и сюда и из стороны в сторону. Говорят, что они обладают тремя “степенями свободы”. Энергия, которую атомы могут получать и накапливать, распределяется по степеням свободы. В дополнение к трем возможным движениям (трансляциям) молекуле, состоящей из двух и более атомов, позволено совершать еще три вращательных движения вокруг воображаемых осей, соединяющих атомы. Следовательно, степеней свободы имеется шесть. Согласно теореме о равнораспределении, энергия газа равномерно распределяется между молекулами, а затем делится поровну между всеми доступными молекуле движениями.

Рэлей использовал эту теорему, чтобы распределить энергию излучения абсолютно черного тела по различным длинам волн внутри полости. Это был пример безупречного использования физики Ньютона, Максвелла и Больцмана. При выводе была допущена несущественная численная ошибка, исправленная затем Джеймсом Джинсом. Получилось выражение, известное как закон Рэлея — Джинса. Но, согласно этой формуле, в ультрафиолетовой области спектра плотность излученной энергии становится бесконечно большой. Этот результат ознаменовал полное поражение классической физики. В 1911 году его назовут “ультрафиолетовой катастрофой”. Слава Богу, на самом деле катастрофы нет: ультрафиолетовое излучение сделало бы жизнь на Земле невозможной.

Эйнштейн самостоятельно вывел формулу Рэлея — Джинса. Он знал, что предсказываемое ею распределение излучения абсолютно черного тела противоречит экспериментальным данным и приводит к абсурдному результату в ультрафиолетовой области спектра. Поскольку закон Рэлея — Джинса правильно описывает излучение абсолютно черного тела только при больших длинах волн (очень низких частотах), за отправную точку Эйнштейн взял полученный прежде закон излучения Вина. Это был единственный надежный путь, несмотря на то, что закон Вина справедлив только для коротких длин волн (высокие частоты) и нарушается при больших длинах волн (низкие частоты) в инфракрасной области. Однако у этого подхода были свои преимущества. У Эйнштейна не было сомнений, что закон Вина справедлив и верно описывает по крайней мере часть спектра излучения абсолютно черного тела. Рассмотрением этой области спектра и собирался ограничиться Эйнштейн.

План Эйнштейна был прост и остроумен. Газ представляет собой набор частиц. При термодинамическом равновесии именно свойства этих частиц определяют, например, давление газа при данной температуре. Если имеется сходство между свойствами излучения абсолютно черного тела и частицами газа, то можно утверждать, что и само электромагнитное излучение похоже на частицы. Эйнштейн начал с рассмотрения воображаемого пустого абсолютно черного тела. Но, в отличие от Планка, он поместил туда газ частиц и электронов. Правда, атомы стенок полости тоже содержат электроны. При нагревании абсолютно черного тела эти электроны совершают колебания в широком интервале частот, что приводит к испусканию и поглощению излучения стенками полости. Вскоре внутренняя полость абсолютно черного тела оказывается заполненной быстро двигающимися частицами и электронами, и осциллирующие электроны излучают энергию. В конце концов, когда полость и наполняющие ее частицы будут иметь одну и ту же температуру T, достигается состояние термодинамического равновесия.

Первый закон термодинамики (закон сохранения энергии) можно записать так, чтобы связать энтропию системы с ее энергией, температурой и объемом. Кроме закона сохранения энергии, Эйнштейн использовал закон Вина, а также идеи Больцмана, стремясь выяснить, как энтропия излучения абсолютно черного тела зависит от занимаемого им объема, “не используя какую-либо модель для описания испускания и распространения излучения”57. Получилась формула, выглядевшая точно так же, как формула, связывающая энтропию газа, состоящего из атомов, с его объемом. Излучение абсолютно черного тела подчинялось тем же закономерностям, как если бы оно состояло из отдельных, похожих на частицы порций энергии.

Для открытия кванта света Эйнштейну не нужен был ни закон излучения Планка, ни его метод. Не повторяя путь Планка, Эйнштейн получил немного другую формулу. Но и его формула содержала ту же информацию: равенство E = h? справедливо. Энергия квантуется и может поглощаться или испускаться только порциями размером h?. Чтобы его воображаемые осцилляторы правильно воспроизводили спектр излучения абсолютно черного тела, Планк квантовал только испускание и поглощение электромагнитного излучения, а Эйнштейн квантовал электромагнитное излучение и, следовательно, сам свет.

Хотя Эйнштейн показал, что есть случаи, когда электромагнитное излучение ведет себя как частички газа, он понимал, что протащил квант света контрабандой, введя его по аналогии. Чтобы убедить других в ценности новой “эвристической точки зрения” на природу света, он использовал ее для объяснения другого малопонятного явления58.

Впервые фотоэлектрический эффект наблюдал немецкий физик Генрих Герц в 1887 году. Он ставил эксперименты, целью которых была демонстрация существования электромагнитных волн, и случайно заметил, что разряд между двумя металлическими сферами становится ярче, если их облучать ультрафиолетовым светом. Объяснить эффект он не смог, хотя потратил несколько месяцев на изучение “совершенно нового удивительного явления”, которое, как он ошибочно считал, связано только с ультрафиолетовым излучением59.

“Было бы лучше, если бы оно [явление] было менее загадочным, — признавался Герц, — однако есть надежда, что когда ответ на эту загадку будет найден, мы сможем понять много больше нового, чем в случае простого решения”60. К сожалению, Герц не дожил до того момента, когда исполнилось его пророчество. Он умер в 1894 году в возрасте всего тридцати шести лет.

Атмосфера таинственности, окружавшая фотоэффект, еще сильнее сгустилась в 1902 году. Бывший ассистент Герца Филипп фон Ленард, поместив две металлические пластинки в стеклянную трубку, из которой был откачан воздух, показал, что этот эффект имеет место и в вакууме. Присоединив проволочки, отходящие от пластинок, к батарее, он обнаружил, что если одну из пластинок осветить ультрафиолетовым светом, в системе начинает течь ток. Фотоэлектрический эффект можно было объяснить эмиссией электронов с освещенной металлической поверхности. Направленный на пластину ультрафиолетовый свет может привести к такому повышению энергии электронов, что они, покинув пластинку, преодолевают расстояние до другой пластины и замыкают контур, вызывая “фотоэлектрический ток”. Однако наблюдавшаяся Ленардом картина противоречила устоявшимся физическим представлениям. Можно сказать, что именно он вывел на сцену Эйнштейна и его квант света.

Считалось, что если делать свет ярче, то есть увеличивать его интенсивность, то число электронов, вылетающих с поверхности пластины, останется прежним, но их энергия будет больше. Ленард же обнаружил, что это совсем не так: увеличивается число электронов, а энергия каждого из них остается прежней. Полученное Эйнштейном квантовое решение этой загадки было простым и элегантным: если свет состоит из квантов, то при увеличении интенсивности светового луча увеличивается и число входящих в него квантов. Когда луч большей интенсивности ударяется о пластинку, большее число квантов приводит к увеличению числа испускаемых электронов.

Второе неожиданное открытие Ленарда состояло в том, что, как оказалось, энергия вылетающих электронов определяется не интенсивностью, а частотой света. Поскольку энергия кванта света пропорциональна его частоте, квант красного света (низкие частоты) обладает меньшей энергией, чем квант голубого света (высокие частоты). Изменение цвета (частоты) луча той же интенсивности не меняет число квантов. Поэтому неважно, какого цвета луч попадает на пластину: число вылетевших электронов будет одинаковым. Однако поскольку свет разной частоты складывается из квантов с разной энергией, электроны будут обладать большей или меньшей энергией в зависимости от цвета луча, которым освещают пластинку. Ультрафиолетовый свет вызовет эмиссию электронов с большей кинетической энергией, чем квант красного света.

Был еще один интригующий факт. Оказалось, что у каждого металла имеется свой минимальный “порог частоты”. Если частота меньше пороговой, электроны, вне зависимости от интенсивности и продолжительности свечения, не вылетают вообще. А если порог превзойден, то даже если свет очень слабый, происходит эмиссия электронов. Квантовая теория света Эйнштейна позволила ответить и на этот вопрос. Для этого ему пришлось ввести новое понятие: работа выхода.

Эйнштейн рассматривал фотоэффект как процесс, в результате которого электрон получает от кванта света достаточно энергии, чтобы преодолеть силы, удерживающие его внутри металла, и удалиться от поверхности. По определению Эйнштейна, работа выхода есть минимальная энергия, необходимая для того, чтобы электрон мог оторваться от поверхности. Для разных металлов работа выхода разная. Если энергия света слишком мала, то квант света не обладает достаточной энергией, позволяющей электрону порвать связи, удерживающие его внутри металла.

Этот процесс Эйнштейн описал простым уравнением: максимальная кинетическая энергия электрона, покинувшего металлическую поверхность, равна энергии поглощенного кванта минус работа выхода. Используя это уравнение, Эйнштейн предсказал, что график зависимости максимальной кинетической энергии электрона от частоты будет представлять собой прямую линию, начинающуюся в точке, соответствующей пороговой частоте данного металла. Для любого металла наклон этой линии всегда будет точно равен постоянной Планка h.