Крутящий момент
Для того чтобы привести тело, находящееся в состоянии покоя, в поступательное движение, требуется приложить к нему силу. Но при некоторых условиях сила может вместо этого вызвать вращательное движение тела. Предположим, например, вы прибили гвоздем один конец доски к деревянному основанию. Если вы теперь толкнете доску, то она не будет двигаться в поступательной манере движения, так как один конец ее закреплен. Вместо этого доска начнет совершать вращательное движение вокруг зафиксированного конца.
Сила, которая вызывает такое вращательное движение, называется крутящим моментом («torque» — от латинского слова, означающего «вращать»). Если мы продолжим использовать греческие буквы для обозначения элементов вращательного движения, мы можем обозначить крутящий момент греческой буквой ? («tau» — «тау»), которая является эквивалентом латинской буквы «t» (от латинского «torque» — очевидно).
Данная сила не всегда вызывает тот же самый крутящий момент. В случае упомянутой доски величина крутящего момента зависит от расстояния между точкой, к которой приложена сила, и фиксированной точкой. Сила, приложенная непосредственно к фиксированной точке, не будет вызывать крутящий момент. По мере отступа от этой точки данная сила произведет все более быстрое вращение и поэтому вызовет все больший и больший крутящий момент. Фактически крутящий момент равен силе (f), умноженной на расстояние (r):
? = fr. (Уравнение 6.5)
В прошлом о крутящем моменте говорили как о «моменте силы», но эта фраза теперь вышла из употребления. Крутящий момент может быть вызван не только в случае, когда какая-то часть тела зафиксирована в пространстве, но даже тогда, когда все тело способно свободно перемещаться.
Рассмотрим тело, обладающее массой, но состоящее из одной-единственной точки. Такое тело может подвергнуться только поступательному движению. Вращающееся тело, в конце концов, крутится относительно некоторой точки (или линии); если эта точка — все, что существует, и нет ничего еще, что могло бы вращаться, возможно только линейное движение. Зато к таким точечным массам наиболее просто применить законы движения.
Однако в реальной Вселенной не существует никаких точечных масс. Все реальные тела, обладающие массой, могут расширяться. Однако можно показать, что в некоторых случаях такие реальные тела ведут себя так, как будто вся их масса сконцентрирована в какой-то одной точке. Точка, в которой эта кажущаяся концентрация может быть найдена, называется «центром масс» тела. Если тело симметрично по форме и однородно по плотности или имеет плотность, которая изменяется симметричным образом, центр массы совпадает с геометрическим центром тела. Например, Земля, по существу, сферическое тело, но в то же время оно неравномерно плотно, плотность Земли — наибольшая в центре, и эта плотность уменьшается одинаково во всех направлениях, по мере приближения к поверхности. Центр масс Земли поэтому совпадает с ее геометрическим центром, и именно к этому центру и направлена сила тяжести.
Концепция центра масс может объяснять несколько вещей, которые иначе могли быть достаточно озадачивающими. Согласно ньютоновскому первому закону движения, объект, находящийся в движении, продолжает перемещаться с постоянной скоростью, если на него не воздействовать некоторой внешней силой. Предположим, что снаряд, содержащий взрывчатое вещество, перемещается через пространство с постоянной скоростью и что в некоторой точке он взрывается. Фрагменты снаряда разлетаются во всех направлениях, и различные химические продукты взрыва также расширяются по различным направлениям вовне. Этот взрыв является внутренней силой, однако, будучи одним из фрагментов в пределах рассматриваемой системы, согласно первому закону он не должен оказывать никакого эффекта на движение системы. Все же различные фрагменты снаряда больше не перемещаются с первоначальной скоростью. Что же — сломались ньютоновские законы движения?
Нисколько. Законы описывают систему в целом и совсем не обязательно должны подходить к той или иной ее части, рассмотренной в изоляции от других. В результате взрыва система изменила свою форму. Но изменил ли взрыв центр масс системы? Центр масс мог бы рассматриваться как «средняя точка» тела. Если одна часть снаряда брошена наружу, то это сбалансировано другой частью, брошенной в противоположном направлении. Чтобы быть более точным, согласно закону сохранения импульса векторная сумма всех импульсов в одном направлении должна быть равна векторной сумме всех импульсов в противоположном направлении. Можно показать, что независимо от того, как изменилась форма тела под действием внутренних силы, центр масс остается там, где он и находился до того, как произошло изменение формы. Другими словами, центр масс системы перемещается с постоянной скоростью независимо от взрыва, который расшвырял частицы системы туда и сюда.
Если бы тело под влиянием силы тяготения двигалось по параболической дуге, его внезапный взрыв не заставил бы центр масс прекратить плавное движение по этой параболической дуге, несмотря на то что отдельные фрагменты разлетелись бы во все стороны. (Сказанное подразумевает отсутствие вмешательства сил извне системы. Если фрагменты ударяются в другие тела и (при)останавливаются, движение центра масс изменяется. Опять же эффект, который оказывает сопротивление воздуха на множество частиц после взрыва, не может быть тем же, что оказывает действие на цельный снаряд перед взрывом; это тоже может изменять движение центра масс.)
Предположим теперь, что тело падает к земле. Каждую частицу тела тянет сила тяжести, но тело ведет себя так, как будто вся сила сконцентрирована в одной точке в пределах тела; такая точка называется «центром тяжести» тела. Если рассматриваемое тело находится в однородном поле тяготения, центр тяжести совпадает с центром масс тела. Однако более низкая часть тела находится несколько ближе к центру земли, чем верхняя, поэтому более низкая часть испытывает на себе большее гравитационное влияние. Следовательно, центр тяжести тела находится чуть-чуть ниже центра масс; при нормальных условиях эта разница настолько незначительная, что ей можно пренебречь, но не следует смешивать или подменять друг другом эти понятия.
Концепция центра тяжести весьма полезна при рассмотрении устойчивости тел. Представьте себе кирпич, опирающийся на свою узкую сторону. Если его слегка качнуть, а затем отпустить, он вернется назад, к своему первоначальному положению. Если качнуть его несколько больше и снова отпустить, он снова вернется назад. По мере увеличения наклона, однако, наступает такое положение, когда он падает на другую свою сторону. Что это за положение, при котором происходит этот «переворот»?
Мы можем рассматривать силу тяжести как силу, воздействующую на центр тяжести кирпича и только на эту точку. Пока центр тяжести расположен непосредственно по некоторой части первоначального основания, после удаления качающей силы эффект гравитационного напряжения перемещает кирпич назад на это основание. Если кирпич качнуть так сильно, что центр тяжести сместится на некоторую точку вне первоначального основания, кирпич упадет на то основание, на котором теперь расположена эта точка.
Центр тяжести
Естественно, чем более широким является основание по сравнению с высотой центра тяжести, тем на больший градус требуется качнуть кирпич, прежде чем центр его тяжести переместится, другими словами: чем шире основание, тем устойчивей тело. Кирпич, лежащий на своей самой широкой стороне, более устойчив, чем такой же, но стоящий на своей узкой стороне.
Конус, опирающийся на свой острый конец, может быть выставлен таким образом, что его центр тяжести будет непосредственно выше этой точки. Тогда он останется в состоянии равновесия. Однако самое небольшое движение или слабое дуновение воздуха способно переместить его центр тяжести за эту точку в одном или другом направлении, и конус упадет вниз. Жонглер переносит объекты, сбалансированные на точках, или, говоря более точно, на очень маленьких основаниях, перемещая собственное тело таким образом, чтобы подводить основание под центр тяжести каждый раз, когда центр тяжести пытается сместиться из этого положения.
Если тело неоднородно по плотности, то его центр тяжести не расположен в его геометрическом центре, а смещен к более плотным частям. Объект, который является особенно плотным в своей самой нижней части («с тяжелым основанием»), имеет необычно низкий центр тяжести. Даже большой градус наклона не будет выносить этот низкий центр тяжести за границу основания, и, когда мы отпустим его, объект возвратится в свое первоначальное положение. С другой стороны, объект, который является особенно плотным в своей верхней части («с тяжелой вершиной»), имеет необычно высокий центр тяжести и упадет даже после небольшого качания. Так как обычно мы имеем дело с объектами примерно однородной плотности, мы удивляемся отказу объекта с тяжелым основанием падать (например, детская игрушка ванька-встанька, которая поднимается, даже если мы положим ее на бок), или легкости, с которой объект с тяжелой вершиной переворачивается.
Позвольте нам теперь вернуться к нашей точечной массе, которая подвержена только поступательному движению. Если мы представим себе силу, приложенную к реальному телу таким образом, чтобы пересечь его центр масс, то это реальное тело ведет себя так, как будто оно — точечная масса и подвергается чисто поступательному движению. Таким образом, у свободно падающего тела сила тяжести приложена непосредственно к центру тяжести (обычно совпадающему с центром масс), поэтому (без учета действия возможного крутящего момента, возникающего в момент, когда тело отпускают, а также ветра и сопротивления воздуха) тело будет падать чисто поступательно.
Если, однако, сила приложена к телу таким способом, что направлена по одной или другой стороне от центра масс, происходит возникновение крутящего момента. Такие тела, даже когда сила приводит их в поступательное движение, одновременно подвергаются и вращательному движению. Манера, в которой двигается футбольный мяч, бейсбольный мяч и любой другой подобный объект, известна всем. В природе настолько трудно сосредоточить силу на центре масс, что фактически невозможно предохранить тело от вращения.
Естественно, чем дальше точка приложения силы находится от центра масс, тем больше в движении тела доля вращательного движения по сравнению с поступательным. Мы можем легко заставить крутиться стоящую на ребре монетку, взяв ее за ребра пальцами, при этом скорость ее вращения — велика, а скорость перемещения — очень небольшая.
Есть теория, согласно которой звезды и планеты были порождены увеличением в результате соударений растущих ядер тел и маленьких фрагментов. В результате труда астрономов возникли схемы, из которых видно, что эти сталкивающиеся тела кажутся имеющими тенденцию более частого соударения со сторонами вне центра масс, что приводит к образованию крутящих моментов, сумма которых не равна нулю. Таким образом, образуется комбинированное движение небесных тел — они двигаются прямолинейно, одновременно вращаясь вокруг некоторой оси.