Вне Земли

Естественно, мелкие изменения в значениях g становятся все большими по мере удаления тела от центра Земли. Дальнейшее усложнение ситуации представляет собой то, что при удалении тела на большое расстояние от Земли мы можем приблизить его к некоторому другому значительному скоплению массы. Такая ситуация возникает в первую очередь в связи с Луной и имеет очень важное значение, поскольку искусственные объекты уже приземлились там, а живые люди могут встать на поверхность Луны в ближайшие несколько лет[21].

Объект на поверхности Луны все еще находится в пределах поля тяготения Земли, которое простирается не только на Луну, но и в принципе на всю Вселенную. Однако Луна также имеет собственное поле тяготения. Это поле намного слабее, чем земное, поскольку Луна намного менее массивна, чем Земля, а объект на поверхности Луны находится намного ближе к центру Луны, чем к центру Земли; гравитационное притяжение Луны поэтому гораздо сильнее, чем таковое у отдаленной Земли, и человек, стоящий на поверхности Луны, будет ощущать только ее притяжение.

Но Луна притягивает к своей поверхности объект отнюдь не с той же силой, как это делает Земля. Чтобы увидеть разницу между этими двумя силами, обратимся назад, к уравнению 4.1, которое утверждает, что F = Gmm’/d2. Эта F представляет собой интенсивность притяжения Земли, с которым она воздействует на объект на ее поверхности. Притяжение Луны, с которым она воздействует на объект на ее поверхности, мы можем обозначить Fm.

Далее, объект имеет одну и ту же массу независимо от того, находится ли он на поверхности Земли или на поверхности Луны, так что m остается неизменным. Значение G также неизменно, поскольку оно является константой повсюду во Вселенной. Масса Луны, однако, как известно, является 1/81 массы (m’) Земли. Масса Луны, следовательно, равна m’/81. Расстояние от поверхности Луны до ее центра — 1737 км, или примерно 3/11, расстояния от поверхности Земли до ее центра, равного 6370 км (d). Следовательно, мы можем выразить расстояние от поверхности Луны до ее центра как 3d/11.

Теперь подставим эти значения в уравнение 4.1, используя массу и радиус Луны, и мы получим уравнение, которое выражает значение силы притяжения Луны для объекта, находящегося на ее поверхности. Итак, это:

Fm = Gm(m’/81)/(3d/11)2 (Уравнение 5.3)

Если мы теперь разделим уравнение 5.3 на уравнение 4.1, то найдем, что Fm/F) (отношение силы тяжести на Луне к силе тяжести на Земле) равно 1/81, разделенной на (3/11)2, или почти точно — 1/6. Таким образом, сила тяжести, которую мы испытали бы на поверхности Луны, будет равна 1/6 той, к которой мы привыкли на поверхности Земли. Человек весом в 180 фунтов, взвесив себя на пружинных весах, найдет, что он весит всего 30 фунтов.

Но, несмотря на столь решительное уменьшение веса, масса объекта останется неизменной. Это означает, что сила, требующаяся, чтобы ускорить данный объект до данной величины, остается той же самой и на Луне, и на Земле. Мы могли бы поднять в воздух своего 180-фунтового друга без особых усилий, поскольку усилие подъема будет не больше, чем то, которое мы развиваем на Земле, поднимая 30 фунтов. Однако на Луне мы не могли бы поднять человека более быстро, чем на Земле. Здесь, на Земле, мы можем достаточно легко управиться с чем-то, что весит 30 фунтов. Но на Луне это что-то, весящее 30 фунтов, будет иметь массу в шесть раз больше «нормальной», а такое количество массы можно переместить только достаточно медленно. По этой причине манипулирование объектами на поверхности Луны создает чувство «замедленного движения», или как будто проталкиваешься сквозь патоку.

Опять же, если мы подпрыгиваем на Луне, силе наших мускулов будет противостоять только 1/6 той силы тяготения, к которой мы привыкли на Земле. Поэтому центр нашего тела поднимется на высоту в шесть раз большую, чем это было бы на Земле. Достигнув этой необычной высоты, мы будем падать по направлению к поверхности, но с ускорением, составляющим 1/6 обычного ускорения (1,63 м/с2). Это означает, что мы, внешне, как бы падали медленно вниз, «планируя, подобно перу». Однако к тому времени, когда бы мы снова достигли поверхности с 1/6 от обычного ускорения и с расстояния большего в шесть раз, мы к моменту приземления все равно бы достигли той скорости, с которой мы приземлились бы после прыжка на Земле (затратив для этого равное усилие, но достигнув значительно меньшей высоты).

Остановка после такой скорости на Луне потребовала бы от нас таких же усилий, как на Земле, поскольку это усилие зависит от массы, а не от веса, а масса остается неизменной и на Луне. И если, введенный в заблуждение своей легкостью, вы поддадитесь искушению приземлиться на большой палец правой ноги, то вы почти наверняка сломаете этот палец.

Однако ситуация может быть сделана даже более необычной и без всяких полетов на Луну. Субъективное ощущение, которое мы называем «весом», является результатом того факта, что мы физически изолированы от реакции на ускорение силы тяжести. Когда мы стоим на поверхности Земли, сама земная материя препятствует нашему ускоренному падению к центру Земли. Эта сила, приложенная к нам в направлении, противоположном реакции твердого основания (земли, на которой мы стоим), и интерпретируется нами как «вес».

Если бы мы падали с ускорением, равным гравитационному ускорению (свободное падение), мы не почувствовали бы никакого веса. Если бы мы находились в подъемнике, который сорвался и рухнул вниз, или в самолете, который пошел в пике, наше чувство веса пропало бы. Мы не сможем давить ногами на пол лифта или самолета, так как этот пол будет падать так же быстро, как мы. И если бы мы были в воздушном пространстве в пределах кабины подъемника, мы не смогли бы снизиться к его полу, поскольку этот пол перемещался бы с такой же скоростью, как это делали мы. Поэтому мы оставались бы «плавающими в воздушном пространстве» и ощутили бы себя невесомыми.

Указанные выше примеры свободного падения несовершенны. Ни подъемник, ни самолет не могут падать длительное время без того, чтобы разбиться и тем самым нарушить эксперимент. Кроме того, падение подъемника или самолета было бы несколько замедлено сопротивлением воздуха, через который они мчатся, причем замедление это больше, чем то, которое испытывает от сопротивления воздуха человек, находящийся в пределах этого подъемника или самолета. Поэтому некоторое чувство веса все-таки присутствовало бы.

Чтобы достичь истинного чувства свободного падения, мы были бы должны подняться выше главной части атмосферы, скажем на высоту примерно 160 километров или более над поверхностью Земли. Чтобы удержаться на этой высоте, было бы неплохо иметь также небольшое поперечное движение, которое удерживало бы нас на орбите вокруг Земли, таким же образом, как комбинация внутренних и поперечных сил удерживает Луну на орбите вокруг Земли.

Описанная ситуация точно воспроизведена в отношении искусственного орбитального спутника. Такой спутник находится в свободном падении и может продолжать это свободное падение в течение долгого периода времени. Астронавт в его пределах не ощущает собственного веса. Это происходит не потому, что он — «вне притяжения Земли», как говорят некоторые дикторы службы новостей. Это происходит потому, что он находится в состоянии свободного падения и все в этом спутнике вместе с ним самим падает с абсолютно одним и тем же ускорением.

Сама Земля находится в состоянии свободного падения на орбите вокруг Солнца. И хотя ее масса огромна, вес ее равен нулю. Кавендиш не «взвесил Землю», поскольку это было ему не нужно; ее вес был равен нулю, и это понимали уже со времен Ньютона. Что сделал Кавендиш, так это — определил массу Земли.

Даже в свободном падении, когда вес равен нулю, масса любого взятого тела остается неизменной. Астронавты, строящие космическую станцию, будут перемещать огромные прогоны, которые не будут иметь никакого веса. Они даже будут способны балансировать такими прогонами на одном пальце, если прогон и палец будут неподвижны относительно друг друга. Однако если прогон был приведен в движение, или если он уже перемещается и должен быть остановлен, или требуется изменить направление его движения, то усилие, которое требуется приложить для этого, будет точно такое же большое, как если бы это происходило на Земле. Человек, попавший в ловушку между двумя прогонами, перемещающимися по направлению друг к другу, может оказаться раздавленным насмерть двумя невесомыми, но не «безмассовыми» объектами.

Различие между массой и весом, которое кажется настолько непринципиальным на Земле, является поэтому совсем не тривиальным, когда мы находимся в космическом пространстве, и легко может стать вопросом жизни и смерти.