Механическая энергия

Приятно видеть, что работа, которую мы прикладываем к одному концу рычага, равна работе, выходящей из другого его конца, и мы могли бы справедливо предположить существование «закона сохранения работы».

К сожалению, такой возможный закон сохранения почти сразу натыкается на препятствие. В конце концов, где работа пребывала до того, как быть приложенной к рычагу? Если один конец рычага управлялся человеком, который использовал рычаг, чтобы поднять груз, работа произошла от перемещения, вызванного движением человеческой руки.

А откуда взялась работа перемещающей рычаг руки? Сидящий спокойно человек может внезапно переместить свою руку и сделать работу там, где никакой работы до этого, казалось, не существовало. Это входит в противоречие с понятием сохранения, в соответствии с которым сохраняемое явление не может быть ни создано, ни разрушено.

Поэтому, если вы стремитесь к тому, чтобы основать закон сохранения работы, вы должны предположить, что работа, или какой-то эквивалент работы, могла бы быть сохранена в человеческом теле (и в других возможных объектах) и что по мере необходимости могут происходить обращения к этому «складу» и вызванная работа была бы сконвертирована в видимую, ощутимую форму.

На первый взгляд такой «склад» работы кажется связанным с живыми формами, так как живые существа кажутся заполненными этой способностью — делать работу, в то время как неодушевленные предметы главным образом лежат в состоянии покоя и не работают. Немецкий философ и ученый Готфрид Вильгельм Лейбниц (1646 — 1716), который был первым, кто получил ясное понятие работы в физическом смысле, хотел назвать этот «склад работы» — vis viva (от латинского выражения, означающего «живая сила»).

Однако совершенно ошибочно предположить, что работа может быть «заложена» только в живых существах; так, ветер может нести суда, а вода поворачивает колесо жернова, и в обоих случаях сила прикладывается на расстоянии. Отсюда возникло предположение, что «склад» работы может быть также и в неодушевленных предметах. В 1807 году английский врач Томас Юнг (1773–1829) предложил для этого «склада» работы термин «энергия». Этот термин происходит от греческих слов, означающих «вместилище работы», и является вполне нейтральным термином, который может применяться к любому объекту независимо от того, живой он или неодушевленный.

Термин «энергия» постепенно приобрел популярность и теперь применяется к любому явлению, способному к преобразованию в работу. Человечеству известно огромное множество таких явлений, а следовательно, множество форм энергии.

Первой формой энергии является непосредственно само движение. Работа включает в себя движение (так как объект должен быть перемещен на какое-то расстояние), так что неудивительно, что движение способно делать работу. Двигающийся воздух, то есть ветер, приводит в движение судно, а не «стоячий» воздух; поток воды поворачивает жернов, а не неподвижная вода. Значит, не воздух или вода содержат энергию, а движение воздуха или воды. Фактически все, что перемещается, содержит энергию, поскольку если перемещающийся объект независимо от того, что он собой представляет, столкнется с другим объектом, то он сможет передать свое количество движения этому второму объекту и привести его массу в движение — таким образом выполняется работа, поскольку масса будет перемещаться на некое расстояние под воздействием силы.

Энергия, связанная с движением, называется «кинетической энергией», этот термин предложил английский физик лорд Уильям Кельвин (1824– 1907) в 1856 году. Слово «кинетический» происходит от греческого слова, означающего «движение».

Так сколько же точно содержится кинетической энергии в теле, перемещающемся с некоторой скоростью, равной v? Чтобы определить это, давайте предположим, что в конце концов мы собираемся обнаружить существование закона сохранения для работы во всех ее формах. В этом случае было бы разумным утверждать, что, если мы выясним, сколько работы требуется, чтобы переместить тело с некоторой скоростью, равной v, тогда это автоматически будет означать количество работы, которую можно выполнить по отношению к некоторому другому объекту благодаря его движению с этой скоростью. Короче говоря, это будет его кинетическая энергия.

Чтобы заставить тело двигаться, во-первых, требуется приложить силу, а эта сила, в соответствии со вторым законом Ньютона, равна массе перемещающегося тела, умноженной на его ускорение: f = та. Тело будет перемещаться на некоторое расстояние, равное d, прежде чем ускорение разгонит его до скорости v, с которой мы и начали разговор. Работа, приложенная к телу, которая требуется, чтобы заставить его двигаться с этой скоростью, равна произведению силы на расстояние.

Если мы выразим силу как ma, то мы получим:

w = mad. (Уравнение 7.2)

Значительно раньше, в этой книге, когда мы обсуждали эксперименты Галилео с падающими телами, мы показали, что v = at, то есть скорость, другими словами, является произведением ускорения на время. Это выражение можно легко преобразовать в t = v/a. Также при обсуждении экспериментов Галилео мы заметили, что там, где имеется однородное ускорение,

d = ?at2,

где d — расстояние, покрытое перемещающимся телом. Если вместо t в указанном выше отношении мы подставим v/a, то получим:

d = ??a(v/a)2 = ??v2/a. (Уравнение 7.3)

Давайте теперь подставим это значение для d в уравнение 7.2, которое тогда примет форму:

w = ??mav2/a = ??mv2. (Уравнение 7.4)

Это — работа, которую следует приложить к телу массой m, чтобы заставить его двигаться со скоростью v. И поэтому это — кинетическая энергия, которую содержит тело такой массы, двигающееся с такой скоростью. Если мы обозначим кинетическую энергию как ek, то можем написать:

ek = ??mv2. (Уравнение 7.5)

Как я уже сказал ранее, единицы измерения работы включают в себя единицы измерения массы, умноженные на квадрат единиц измерения скорости, и, как видно из уравнения 7.5, кинетическая энергия — тоже. Поэтому кинетическая энергия, как и работа, может быть измерена в джоулях или эргах. И действительно, все формы существования энергии могут быть измерены в этих единицах.

Теперь представим себе, что мы можем обосновать закон сохранения, в котором кинетическая энергия может быть преобразована в работу и наоборот, но в котором сумма кинетической энергии и работы в любой изолированной системе должна остаться постоянной. Но такой закон сохранения не выдержит, как будет показано ниже, никакой критики.

Объект, брошенный в воздух, по мере того как он покидает руку (или катапульту, или некое орудие), приобретает некоторую скорость и поэтому некоторую кинетическую энергию. Поскольку он поднимается вверх, его скорость уменьшается, из-за ускорения, наложенного на него полем тяготения Земли. Значит, и его кинетическая энергия постоянно уменьшается, и в конечном счете, когда объект достигает максимальной высоты и останавливается, его кинетическая энергия полностью исчезает — становится равной нулю. Можно бы было предположить, что кинетическая энергия исчезла из-за того, что в атмосфере была произведена работа и что поэтому кинетическая энергия была переведена в работу. Однако это — неадекватное объяснение события, поскольку то же самое происходило бы и в вакууме. Далее: можно было бы предположить, что кинетическая энергия исчезла полностью и без следа, то есть без появления работы, и что поэтому нет возможности применить какой-либо закон сохранения, включающий в себя работу и энергию. Однако после того как объект достиг максимальной высоты и скорость его движения стала равна нулю, он снова начинает падать, теперь уже вниз, все еще находясь под действием силы тяготения. Он падает все быстрее и быстрее, приобретая все большую кинетическую энергию, и в тот момент, когда он ударяется о землю (сопротивлением воздуха мы пренебрегаем), он обладает всей той кинетической энергией, с которой начал свое движение.

Чтобы не потерять свой шанс обосновать закон сохранения, мне кажется разумным предположить, что энергия, наверное, не исчезала при движении объекта вверх, а просто запасалась в некоторой другой форме, чем кинетическая энергия. Для того чтобы поднять объект на некоторую высоту, преодолевая силу тяжести, требуется выполнить некоторую работу, даже несмотря на то, что, когда объект достиг этой высоты, он остановился. Эта работа должна быть запасена в виде энергии, которую объект содержит в себе и которая основывается на его положении по отношению к полю тяготения земли.

Таким образом, можно сказать, что по мере подъема объекта кинетическая энергия постепенно преобразовывалась в «энергию положения». На максимальной высоте вся кинетическая энергия стала такой «энергией положения». По мере падения объекта назад, вниз «энергия положения» еще раз преобразовалась — обратно в кинетическую энергию. Так как «энергия положения» имеет потенциальность кинетической энергии, то шотландский инженер Уильям Дж.М. Ранкин (1820–1872) в 1853 году предложил назвать такую энергию «потенциальной», и это предложение было принято.

Чтобы поднять тело на некоторое расстояние (d) вверх, требуется приложить силу, равную его весу, на требуемом расстоянии. Сила, приложенная весом, равна mg, где m — масса тела, a g — ускорение свободного падения (см. уравнение 5.1). Если мы обозначим потенциальную энергию как ep, то получим:

еp = mgd. (Уравнение 7.6)

Если вся кинетическая энергия тела была преобразована в потенциальную энергию, то значит — первоначальная ek конвертировалась в эквивалентную e, или, объединив уравнения 7.5 и 7.6, получим:

??mv2 = mgd,

упростив это выражение и приняв предположение, что величина g — постоянна, получаем:

v2 = 2gd = 19,6d. (Уравнение 7.7)

Из этого соотношения можно вычислить (пренебрегая сопротивлением воздуха) высоту, до которой поднимется объект, если нам известна его начальная скорость, то есть та, с которой он двигается вверх. Те же самые соотношения могут быть получены из уравнений, которые явились результатом экспериментов Галилео Галилея с падающими объектами.

Кинетическая энергия и потенциальная энергия — это типы энергии, которые используются механизмами, созданными при помощи рычагов, наклонных плоскостей и колес, а потому эти две формы могут быть объединены одним общим понятием — «механическая энергия». Уже во времена Лейбница было признано, что существует своего рода понятие «сохранения механической энергии» и что (если отбросить такие внешние коэффициенты, как трение и сопротивление воздуха) механическая энергия могла бы быть визуализирована в виде движения вперед и назад между кинетической и потенциальной формами или между ними и работой, но не (и это справедливо для всех трех форм) как нечто, появляющееся из ниоткуда или исчезающее в никуда.