Передача

Очевидно, что свет вломился в сознание человека, как только это сознание возникло. Происхождение самого слова похоронено глубоко в тумане начала индоевропейских языков. Важность света была высоко оценена самыми первыми мыслителями. Даже в Библии первый приказ Бога и создании мира гласил «Да будет свет!».

Свет распространяется по прямой. Это каждый из нас знает с детства. Мы уверены в том, что если мы смотрим на предмет, то этот предмет находится там, куда мы смотрим. (Это полностью верно, если только мы не смотрим в зеркало или сквозь стеклянную призму, но эти исключения из общего правила так несложно запомнить.)

Такое прямолинейное движение света, его прямолинейное распространение, является базовым допущением оптики (от греческого «взгляд»), изучающей физику света. Там, где поведение света анализируется так, что его лучи представляют прямые линии, и где эти линии изучали геометрическими методами, мы говорим о геометрической оптике. Именно геометрической оптике посвящены эта и следующая главы.

Представьте себе источник света, например пламя свечи. При условии, что никакой материальный объект не перекроет ваш угол зрения, пламя будет видно с одинаковой легкостью с любого направления. Соответственно свет может быть представлен как распространяющийся во все стороны от своего источника. К примеру, солнце иногда рисуют (в двухмерном отображении) как круг с линиями, изображающими лучи, расходящимися в стороны со всех сторон окружности.

Такие линии в рисунке солнца напоминают спицы колеса, расходящиеся от ступицы. По-латыни спица колеса — радиус (это дает нам слово для обозначения прямой линии, исходящей из центра круга к окружности). Самая малая порция светового излучения напоминает линию по своей прямоте и предельно малой толщине — это световой луч.

Солнечный луч, светящий через дыру в занавеске, образует световой столб, расширяющийся на промежутке от дыры до противоположной стены, и на месте его пересечения со стеной появляется ярко освещенный круг. Если воздух в комнате нормально запылен, то этот столб света будет виден как столб мерцающих пылинок. Прямые линии, ограничивающие световой столб, будут наглядным свидетельством прямолинейного распространения света. Такой световой столб является пучком лучей. Пучок лучей можно рассматривать как совокупность бесконечного количества бесконечно тонких световых лучей.

Источники света не одинаковы по своей яркости. Стоваттная лампочка дает больше света, чем свечка, и несравнимо больше света дает нам солнце. Чтобы измерять количество света, излучаемого световым источником, физики должны были договориться о принятии одного конкретного источника света за стандарт.

Изменения интенсивности света в зависимости от расстояния

Проще всего было выбрать стандартную свечку, сделанную из конкретного материала (лучше всего восковую), приготовленную определенным образом и отлитую по установленным требованиям.

Свет, излучаемый такой свечкой в горизонтальном направлении, был признан равным одной канделе, свече. Сейчас свечу заменили электрические лампы установленной формы, особенно в Соединенных Штатах, но мы все равно говорим о международной канделе, о единице измерения количества света, примерно равной старой свече.

Яркость источника света каким-то образом изменяется в зависимости от расстояния, с которого он наблюдается: чем больше расстояние, тем тусклее свет кажется. Рядом со свечкой книгу можно читать без усилий; чуть отнести ее подальше — и сначала читать будет трудно, а затем — невозможно.

Это неудивительно. Допустим, что от пламени свечи исходит строго определенное количество света. Так как он распространяется во все направления, это строго отмеренное количество будет растянуто на все большее и большее пространство. Можно представить границу освещенного пространства как поверхность шара, где источник света находится в середине. Поверхность этой сферы будет становиться все больше и больше, по мере того как свет будет распространяться наружу.

Из геометрии нам известно, что площадь поверхности сферы пропорциональна квадрату длины радиуса. Если расстояние от источника света (радиус воображаемой сферы, о которой мы рассуждаем) удваивается, то площадь, по которой распространяется свет, увеличивается в 4 раза. Если расстояние утраивается — площадь увеличивается в 9 раз. Общее количество света на всей освещенной площади останется тем же самым, но освещенность, то есть количество света, падающего на конкретный участок поверхности, должна уменьшаться. Более того, она должна уменьшаться пропорционально квадрату расстояния от источника света. Удвоение расстояния уменьшит силу света до ? первоначальной; утроение расстояния — до 1/9.

Допустим, мы используем квадратный фут как единицу площади поверхности и представим, что квадратный фут искривлен так, что он стал частью сферической поверхности таким образом, что все ее точки равноудалены от расположенного в центре сферы источника света. Если наш квадратный фут находится на расстоянии одного фута от источника света, производящего одну канделу света, то сила света, получаемого поверхностью, — 1 фут-кандела. Если поверхность перемещается на расстояние двух футов, то интенсивность его освещения — ? фут-канделы и т. д.

Поскольку освещенность определяется как количество света на единицу площади, мы можем также выражать его в количестве кандел на квадратный фут. Однако для этих целей обычно используется другая единица измерения — люмен (от латинского слова, означающего «свет»). Так, если один квадратный фут на определенной дистанции от источника света получает 1 люмен, то два квадратных фута получают 2 люмена света, а половина квадратного фута получает ? люмена. Однако во всех случаях освещенность остается 1 люмен/кв. фут. Итак, люмен определяется таким образом, что освещенность в 1 люмен/кв. фут равняется 1 фут-канделе.

Представьте себе источник света в 1 канделу в центре пустой сферы с радиусом в один фут. Освещенность на каждом участке внутренней поверхности сферы — 1 фут-кандела, или 1 люмен/фут2. Таким образом, каждый квадратный фут внутренней поверхности получает 1 люмен освещения. Площадь поверхности сферы равна 4?r2 кв. фут. Поскольку r, радиус сферы, равняется в нашем случае 1 футу, то количество квадратных футов площади поверхности нашей сферы равняется 4?. Значение ? (греч. «пи») примерно равно 3,14, поэтому можно сказать, что площадь этой сферы — около 12,56 кв. фут. Сила света (которая в нашем случае равна 1 канделе), таким образом, доставляет 12,56 люмена, поэтому мы можем сказать, что одна кандела равна 12,56 люмена.

Свет распространяется полностью и беспрепятственно только в вакууме. Все виды материи в той или иной степени поглощают свет. Большинство видов материи делают это в такой степени, что поглощают весь падающий на них свет и являются светопоглощающими.

Если светопоглощающий предмет поставлен между источником света и освещаемой поверхностью, свет будет проходить вокруг предмета, но не сквозь него. Со стороны объекта, противоположной источнику света, таким образом, появится темное пространство, именуемое тенью. Там, где это пространство попадет на освещаемую поверхность, будет неосвещенный участок; это двухмерная проекция тени, которую мы обычно этим словом и называем.

Луна отбрасывает тень. Половина ее поверхности подставлена прямым лучам солнца; другая половина расположена таким образом, что светонепроницаемое вещество самой Луны закрывает Солнце. Мы видим только освещенную сторону Луны, и поскольку эта освещенная сторона повернута к нам углом, который изменяется от 0 до 360° на протяжении календарного месяца, то мы и видим, как Луна проходит все фазы своего цикла.

Далее, лунная тень падает не только на собственную поверхность Луны, но и дальше распространяется в пространство на двести тысяч миль. Если бы Солнце было точечным источником света, то есть весь свет исходил бы из одной точки в центре Солнца, — то эта тень тянулась бы бесконечно.

Однако Солнце излучает свет по всей своей поверхности, и чем дальше предмет находится от Луны, тем меньше ее видимые размеры, пока наконец она не станет такой маленькой, что уже не сможет полностью закрывать Солнце, которое гораздо больше ее. С этого момента Луна уже не отбрасывает полную тень, а полная тень, или убмра (от латинского umbra — тень), уменьшается до точки. Однако умбра тянется достаточно далеко, чтобы достигнуть поверхности Земли, и иногда, когда Луна оказывается точно между Землей и Солнцем, случается солнечное затмение на небольшом участке земной поверхности.

Земля тоже отбрасывает тень, и половина ее поверхности находится в этой тени. Земля оборачивается вокруг собственной оси за двадцать четыре часа, и каждый из нас переживает эту тень (ночь) каждые сутки. (Это не совсем верно для полярных областей по причинам, которые лучше описаны в учебнике астрономии.) Луна может попадать в земную тень, которая гораздо длиннее и шире, чем тень от Луны, и тогда мы можем наблюдать лунное затмение.

Светонепроницаемая материя не абсолютно непроницаема. Если она становится достаточно тонкой, немного света может пройти сквозь нее. Например, свет может проходить сквозь тонкий золотой лист, хотя само по себе золото светонепроницаемо.

Некоторые виды материи поглощают так мало света (на единицу толщины), что с той толщиной, с которой мы их встречаем в повседневной жизни, не особенно влияют на прохождение сквозь них света. Такие формы материи называются прозрачными. Лучшим примером прозрачной материи является воздух. Он так прозрачен, что мы редко осознаем его присутствие, поскольку мы видим предметы сквозь него так, как будто никакого препятствия и нет. Почти все газы прозрачны. Множество жидкостей, например вода, тоже прозрачны.

А вот среди твердых видов материи прозрачность — исключение. Одной из редких естественных субстанций, прозрачных в твердом виде, является кварц, и изумленные греки считали его формой теплого льда. Само слово «кристалл», впервые примененное к кварцу, происходит от греческого «лед», а слово «кристальный» одним из своих значений имеет «прозрачный».

Прозрачность становится тем менее выраженной, чем толще становятся слои обычно прозрачных веществ. Небольшое количество воды явно прозрачно, и камни на дне чистого пруда четко видны. Однако когда ныряльщик погружается в воду моря, достигающий его свет становится все слабее и слабее, а на глубине 450 футов свет почти уже не проникает вглубь. Слои воды большей толщины так же непрозрачны, как и слои камня такой же толщины, и морское дно уже невозможно увидеть сквозь покрывающую его «прозрачную» воду.

Воздух поглощает свет еще меньше, чем вода, соответственно он менее прозрачен. Несмотря на то что мы находимся на дне воздушного океана глубиной во много миль, свет беспрепятственно достигает нас, а мы беспрепятственно можем наблюдать куда более слабый свет звезд[79].

Тем не менее некоторое поглощение все же присутствует: подсчитано, что 30 процентов света, достигающего Земли из космоса, поглощается атмосферой. (Некоторые виды радиоактивного излучения, отличные от видимого света, поглощаются атмосферой с куда большей эффективностью, и толщины покрывающего нас воздуха достаточно, чтобы в данном случае он оказался непрозрачным для этих излучений.)

Свет — это форма энергии, и, поскольку он с легкостью может переходить в другие виды энергии, его нельзя уничтожить. Кажется, что при поглощении непрозрачной материей (или толстым слоем прозрачной материи) он уничтожается, но на самом деле он переходит в тепло.