Специальная теория

Если приращение массы движущейся с большой скоростью заряженной частицы является результатом ее движения относительно эфира, то напрашивается новый способ измерения такого движения. Предположим, что одни заряженные частицы взвешивают по мере того, как они пролетают в одном направлении, другие — пока они пролетают в другом направлении, и т. д. Если охватить все направления, то получится, что одни частицы должны будут двигаться по эфирному ветру, в то время как другие, движущиеся в противоположном направлении, будут перемещаться против него.

Те частицы, что предположительно движутся против эфирного ветра, будут двигаться быстрее по отношению к эфиру и прибавят больше массы, чем те, которые будут двигаться с той же скоростью (относительно нас) по эфирному ветру. По изменению прибавления массы в зависимости от перемены направления можно установить скорость эфирного ветра, а стало быть, и абсолютное движение Земли.

Однако и этот способ оказался неудачным, так же как и эксперимент Михельсона — Морли. Прибавление массы по мере движения оказалось одним и тем же независимо от направления движения. Более того, все эксперименты, целью которых было установить абсолютное движение, провалились.

В общем-то еще в 1905 году молодой швейцарский физик — немец по месту рождения — Альберт Эйнштейн (1879–1955) уже понял, что поиск способов измерения абсолютного движения ни к чему не приведет. Допустим, что мы возьмем быка за рога и примем за данное, что невозможно измерить абсолютное движение каким бы то ни было допустимым методом[94], и рассчитаем следствия из такого решения. Итак, первое допущение Эйнштейна было таково: любое движение должно быть признанным по отношению к некоему объекту или некоей системе объектов, произвольно принятых за находящиеся в покое; любой объект или система объектов (любая система отсчета) могут быть приняты с равной верностью за находящиеся в покое. Другими словами, нет ни одного объекта, который находится в «более реальном» состоянии покоя, чем другие.

Поскольку с этой точки зрения любое движение может быть только относительным, Эйнштейн выдвинул теорию, которая позже получит название теория относительности. В своей первой работе на эту тему в 1905 году Эйнштейн рассматривал только специальный случай движения с постоянной скоростью; следовательно, данная часть его концепции — это специальная теория относительности.

Затем Эйнштейн произвел второе допущение: скорость света в вакууме, по данным измерений, всегда будет одной и той же независимо от движения источника света по отношению к наблюдателю. (Обратите внимание, что я говорю о скорости «по данным измерений».)

Это постоянство данных измерений скорости света, казалось бы, должно противоречить «фактам», касающимся движения, которые были признаны со времен Галилея и Ньютона.

Предположим, некто бросает мяч мимо нас, мы измеряем горизонтальную скорость мяча относительно нас и находим ее равной x футов в минуту. Если человек находится на платформе, движущейся в противоположном направлении со скоростью y футов в минуту, и бросает мяч с той же силой, его горизонтальная скорость относительно нас должна быть x – y футов в минуту. Если бы платформа двигалась в том же направлении, в котором он бросал мяч, горизонтальная скорость мяча относительно нас должна быть x + y футов в минуту.

И казалось бы, в жизни мы наблюдаем именно такую картину, и измерения подтверждают это. Разве не так должно быть, если человек «бросает» не мяч рукой, а свет фонариком?

Для того чтобы второе допущение Эйнштейна оставалось верным, следует предположить, что эта ситуация не распространяется на свет, да и для мяча-то она на самом деле не такова.

Допустим, что воздействие движения платформы на скорость мяча не так велико, как нам кажется, и что, когда движение платформы добавляется к движению мяча, общая скорость мяча немного меньше, чем x + y. А если движение платформы противоположно движению мяча, то общая скорость мяча немного больше, чем xy. Предположим также, что эта разница возрастает по мере возрастания x и y, но что для скоростей всех материальных тел, которые было возможно наблюдать до 1900 года, эта разница оставалась слишком малой, чтобы ее можно было измерить. Следовательно, мы могли сделать вполне естественный вывод, что общая скорость равна строго x + y или строго x – y и что это верно для всех скоростей.

Но если иметь возможность наблюдать за очень большими скоростями, порядка тысяч километров в секунду, эта разница станет достаточно большой, чтобы ее можно было заметить. Если добавить скорость y к скорости x, общая скорость будет заметно меньше, чем x + y, н будет лишь немногим больше одной скорости x.

Таким же образом, если y вычитается из x, общая скорость будет значительно больше, чем x – y и лишь немного меньше одной скорости x. В конце концов на скорости света воздействие движения источника движущегося тела становится равным нулю, так что x + y = x, и x – y = x независимо от величины y. И это — еще один способ выражения второго допущения Эйнштейна.

Фактически для сохранения этого допущения необходимо складывать скорости таким образом, чтобы их сумма никогда не превышала скорость света. Например, предположим, что платформа движется вперед (по отношению к нам) со скоростью 290 000 км/с, или лишь на 10 000 км/с медленнее скорости света в вакууме. Далее предположим, что с платформы вперед бросают мяч со скоростью 290 000 км/с относительно платформы. Скорость мяча относительно нас должна быть 290 000 + 290 000 км/с при движении вперед, но на этих скоростях влияние движущейся платформы настолько снижено, что общая скорость будет всего лишь 295 000 км/с и все еще остается меньше, чем скорость света.

На самом деле это может быть выражено математически. Если две скорости (V1 и V2) прибавляются друг к другу, то, по Ньютону, их суммарная скорость должна быть V = V1 + V2. По Эйнштейну же, суммарная скорость будет равна:

где С — скорость света в вакууме. Если V1 равно С, то уравнение Эйнштейна примет вид:

Другими словами, если одна скорость равна скорости света, то добавление к ней другой скорости, даже равной той же скорости света, составит общую скорость, не превышающую скорость света.

Короче говоря, из утверждения Эйнштейна о постоянной измеряемой скорости света можно сделать вывод, что измерение скорости любого движущегося тела всегда покажет величину меньше скорости света[95].

Кажется странным и неудобным принимать такую необычную картину мира только для того, чтобы придерживаться допущения Эйнштейна о постоянности измеряемой скорости света. Тем не менее независимо от того, можно ли измерить скорость света, эта скорость всегда представлялась постоянной, и независимо от того, можно ли измерить скорость движущихся тел, их скорость всегда представлялась меньше скорости света. Короче, еще ни один физик не обнаружил ни одного явления, которое бы нарушало утверждение Эйнштейна об относительности движения или его же утверждение о постоянстве скорости света, а искали они усердно, уж будьте уверены.

Эйнштейн мог вывести из своих утверждений и существование сокращения Лоренца — Фитцджеральда, так же как и описанное Лоренцем приращение массы с движением. Более того, он показал, что не только электрически заряженные частицы прибавляют массу с движением, но и незаряженные частицы тоже. Фактически по мере движения все объекты прибавляют в массе.

Может показаться, что вряд ли есть причина так усиленно вдаваться в специальную теорию. Какая разница, начинать ли с утверждения сокращения Лоренца — Фитцджеральда и из него выводить постоянство скорости света или начинать с утверждения о постоянстве скорости света и выводить из него сокращения Лоренца — Фитцджеральда?

Если бы это было все, то значительной разницы действительно не было бы. Однако Эйнштейн соединил свое допущение о постоянстве скорости света со своим первым допущением об относительности всего движения.

Это означало, что прибавление массы является не «реальным» явлением, а лишь изменением данных измерений. Размер, на который сокращена длина или увеличена масса, не является чем-то определяемым абсолютно, он различается от наблюдателя к наблюдателю.

Чтобы понять, что это означает, представьте себе два одинаковых космических корабля, движущиеся в противоположных направлениях по непересекающейся траектории; на каждом космическом корабле находится оборудование, позволяющее измерить длину и массу другого корабля в то время, как тот пролетает мимо.

С космического корабля X видно, как мимо в определенном направлении пролетает космический корабль Y со скоростью 260 000 километров в секунду, и на этой скорости корабль Y, по данным измерений, имеет только половину своей длины покоя и удвоенную массу сравнительно со своей же массой покоя.

Но люди в корабле Y не чувствуют движения (так же как и мы не чувствуем своего движения сквозь космос вокруг Солнца).

Люди на корабле Y ощущают себя недвижимыми и имеющими длину покоя и массу покоя. А видят они, что мимо них пролетает (в противоположном направлении) корабль X со скоростью 260 000 километров в секунду. Для них именно показатели корабля X изменились на половину длины и удвоенную массу.

Если бы наблюдатели могли общаться между собой во время движения, у них были бы солидные аргументы. Каждый мог бы сказать: «Я нахожусь в покое, а ты движешься. Я нормальной длины, а ты сокращенной. Я имею нормальную массу, а ты — удвоенную».

Так кто же на самом деле «прав»?

Правильный ответ — никто (или оба). Видите ли, вопрос не в том, что «на самом деле» происходит с длиной и массой или какой из кораблей «на самом деле» имеет сокращенную длину или увеличенную массу. Вопрос только в измерении. (Это как — проводя тривиальную аналогию — измерять стороны прямоугольника размером четыре на два метра, а потом спорить, какова «на самом деле» длина прямоугольника — два или четыре метра. Ведь это зависит от того, с какой стороны мерить.)

Но допустим, что вы пытаетесь произвести некий эксперимент, который, предположим, лежит за пределами измерений «реальности». Предположим, например, что вы поставили два корабля рядом и сравнили их напрямую, чтобы выяснить, который из них длиннее и тяжелее. Это на самом деле не может быть произведено в рамках специальной теории Эйнштейна, поскольку она имеет дело только с равномерным движением. Чтобы свести корабли вместе, нужно, чтобы, как минимум, один из них изменил направление движения и развернулся, то есть произвел бы неравномерное или ускоренное движение.

Однако, даже если мы это сделаем и представим оба корабля бок о бок и неподвижными относительно друг друга, после того как они пролетят мимо друг друга на таких суперскоростях, мы не можем делать выводы относительно «реальности». Находясь в покое, каждый из них будет и измерять другого как имеющего нормальную длину и массу. Если и происходило «реальное» изменение длины и массы какого-либо корабля в прошлом, то теперь это изменение исчезло бы без следа.

Несмотря ни на что, сложно перестать думать о «реальности». Тут может помочь воспоминание о том, что были времена, когда мы отказались от иллюзорной «реальности» и с нами не только ничего не случилось, но и адаптировались к жизни мы гораздо лучше.

Так, ребенок очень точно знает, что такое «верх» и «низ». Его голова показывает «вверх», его ноги указывают «вниз» (если он стоит нормально); он прыгает «вверх», он падает «вниз». Более того, вскоре он обнаруживает, что все вокруг него разделяют его мнение по поводу «верха» и «низа».

Если ребенку с такими убеждениями показать глобус, где США находятся вверху, а Австралия — внизу, так что маленькие американцы стоят вверх головой, а маленькие австралийцы — вниз головой, его первой реакцией может быть: «Но это же невозможно! Маленькие австралийцы упадут!»

Конечно, если понимать воздействие силы притяжения (а это понимали задолго до Аристотеля, как минимум, с тех пор, как появилось само представление о Земле, см. ч. I), то бояться, что кто-нибудь упадет с любой части Земли, вы уже не будете. Однако вопрос о природе «верха» и «низа» останется открытым. Вы можете позвонить жителю Австралии по международному телефону и сказать: «Я стою вверх головой, поэтому вы, должно быть, вниз головой». Он ответит: «Нет, нет. Я явно стою вверх головой, стало быть, вниз головой стоите вы».

Видите ли вы, таким образом, насколько бессмысленно спрашивать о том, кто прав и кто «на самом деле» вверх головой? Оба правы, и оба не правы. Каждый стоит вверх головой в рамках собственной системы координат, и каждый стоит вниз головой в рамках системы координат другого.

Большинство людей настолько привыкли к этому, что для них «относительный верх» и «относительный низ» не являются больше нарушениями «здравого смысла». На самом деле именно представление об «абсолютном верхе» и «абсолютном низе» кажется теперь неправильным. Если кто-то всерьез будет утверждать, что австралийцы ходят, будучи подвешенными за ноги, его засмеют.

Если принять принципы релятивистской Вселенной (в как можно более юном возрасте), вышеописанное тоже не будет казаться противоречащим здравому смыслу.