Электронные подоболочки

Электроны могут находиться лишь на описанных квантовыми числами орбитах. Когда электронов несколько (а у всех элементов, кроме водорода, их по два и более), они распределяются по орбитам, причем первой заполняется ближняя к ядру орбита.

Но сколько электронов могут находиться на одной и той же орбите одновременно? В 1925 году австрийский физик Вольфганг Паули (1900–1958) предположил, что, раз спектр каждого элемента уникален, значит, внутри каждого атома не могут существовать электроны с идентичными квантовыми числами, хотя бы одно из четырех должно отличаться. То есть на произвольной орбите, будь то круговая, эллиптическая или накрененная, могут вращаться максимум 2 электрона, причем один из них по часовой стрелке, а второй — против. Этот принцип существования двух электронов с противоположными спинами называется принцип исключения Паули.

Теперь мы можем определить количество электронов на каждой представленной соответствующим квантовым числом группе орбит.

Пусть n = 1, тогда L = 0 и m = 0, т. е. характеристики единственной орбиты — 1/0/0. На такой орбите могут находиться два электрона с противоположными спинами. Общим числом электронов первой группы орбит (n = 1) является 2.

Теперь предположим, что n = 2, тогда L = 0 или 1, а m = 0,1 или –1; при L = 0 и m = 0. Тогда для n — 2 существуют 4 возможные орбиты; 2/0/0; 2/1/0; 2/1/1 и 2/1/–1. На каждой из этих орбит могут находиться по два электрона с противоположными спинами, следовательно, общее число электронов второй группы орбит — 8.

Таким же образом можно определить, что общее число электронов следующей группы орбит (n = 3) равняется 18. То есть максимальное количество электронов группы орбит n можно вычислить по формуле 2n2. Отсюда для группы орбит 4 (n = 4) общим числом электронов является 32, для n = 5–50 и т. д.

В физике группы орбит, представленные главным квантовым числом л, соответствуют электронным оболочкам в химии, представленным в модели атома Льюиса — Ленгмюра.

Общее количество электронов группы орбит можно согласно значению L разделить на подоболочки. Например, если n = 1, то L = 0, значит, первая электронная оболочка состоит всего лишь из одной подоболочки, где могут находиться 2 электрона.

Если п = 2, то L = 0 и 1. При L = 0 орбита всего одна (2/0/0), соответственно электронов максимум 2; но при L = 1 орбит уже 3 (2/1/0, 2/1/1, 2/1/–1) и максимальное количество электронов — 6. Итого на второй оболочке 8 электронов, составляющих две подоболочки: на одной 2 электрона, на второй — 6.

Точно так же 18 электронов третьей оболочки можно разделить на 3 подоболочки по 2, 6 и 8 электронов. Вообще электроны оболочки с главным квантовым числом n можно разделить на n подоболочек: первая подоболочка будет содержать 2 электрона, а каждая последующая — на 4 электрона больше, чем предыдущая (то есть 6, 10, 14, 18 и т. д.).

Эти подгруппы обозначаются латинскими s, p, d, f, g, h и /. To есть первая оболочка состоит из 1s подоболочки, вторая — из 2s и 2p подоболочек и т. д.

Теперь давайте попробуем применить все это собственно к химическим элементам. Первые два никаких трудностей не вызывают. У водорода 1 электрон, у гелия — 2, и все они находятся на единственной подоболочке первой электронной оболочки.

Элемент Количество электронов на 1s Атомное число Водород 1 1 Гелий 2 2

У всех элементов с атомным числом больше 2 на первой оболочке по 2 электрона. Оставшиеся электроны распределяются по внешним оболочкам. Следующие восемь элементов распределяют эти электроны на второй электронной оболочке, состоящей из 2s подоболочки (вмешает 2 электрона) и 2p подоболочки (вмещает 6 электронов).

Элемент Количество электронов на Атомное число 1s 2s 2p Литий 2 1   3 Бериллий 2 2 — 4 Бор 2 2 1 5 Углерод 2 2 2 6 Азот 2 2 3 7 Кислород 2 2 4 8 Фтор 2 2 5 9 Неон 2 2 6 10

У атома неона вторая электронная оболочка заполнена, и в атомах следующих элементов заполняется уже третья электронная оболочка. Эта оболочка состоит уже из 3 подоболочкек: 35 (2 электрона), Зр (6 электронов), 3d (до 10 электронов).

Элемент Количество электронов на Атомное число 1s 2s 3s 3p 3d 2р Натрий 2 8 1 — — 11 Магний 2 8 2 — — 12 Алюминий 2 8 2 1 — 13 Кремний 2 8 2 2 — 14 Фосфор 2 8 2 3 — 15 Сера 2 8 2 4 — 16 Хлор 2 8 2 5 — 17 Аргон 2 8 2 6 — 18

Обратите внимание на сходство заполнения оболочек этих элементов и элементов предыдущего списка. Одинаково заполнены 2s2р атома лития и 3s3p натрия; 2s2p бериллия и 3s3p магния; 2s2p бора и 3s3p алюминия и т. д. Вот почему таблица химических элементов является периодической.

У атома аргона на 3s и 3p подоболочках по 2 и 6 электронов соответственно — столько же, сколько и у неона на 2s и 2p. Оба этих элемента относятся к благородным газам. В то же время 3d подоболочка атома аргона не заполнена полностью — там есть место для 10 электронов. Значит, инертность благородных газов определяется полным заполнением s и p подоболочек внешней электронной оболочки их атомов, содержащих в общей сложности 8 электронов. Таким образом, наличие этого количества электронов на внешней оболочке является признаком благородного газа. Единственное исключение составляет гелий, у которого всего одна подоболочка (1s), которая также полностью заполнена.

Вы, возможно, предполагаете, что в атомах следующих за аргоном элементов заполнена подоболочка 3d. Однако это не так. Дело в том, что каждому электрону, условно говоря, требуется место, а каждая оболочка атома содержит все больше и больше электронных подоболочек, и в конце концов внешние подоболочки одной электронной оболочки начинают перекрывать внутренние подоболочки другой. В данном случае подоболочка 3d перекрывает подоболочку 45. To есть заполняется подоболочка 45, а не 3d.

Элемент Количество электронов на Атомное число 1s 2s 3s 3d 4s 2p 3p Калий 2 8 8 — 1 19 Кальций 2 8 8 — 2 20

У кальция 1 электрон на подоболчке 4s, как у натрия на 3s и лития на 2s. Подобную аналогию можно провести между кальцием, магнием и бериллием.