Относительность времени

Эйнштейн пошел еще дальше в своих выводах из своих же допущений и вышел за рамки рассуждений Лоренца — Фитцджеральда о длине и массе, подойдя к обсуждению времени.

Время всегда измеряется посредством некоего ровного периодического движения: вращения Земли, капанья воды, ударов метронома, колебаний маятника, лаже вибраций атома в молекуле. Однако перемены в длине и массе при возрастании скорости неизбежно должны привести к замедлению любого периодического движения. Следовательно, время должно измеряться, как протекающее все медленнее по мере возрастания скорости относительно наблюдателя.

И вновь нам потребуется коэффициент Фитцджеральда. Так, промежуток времени (t), наблюдаемый на теле, движущемся с данной скоростью относительно промежутка времени в покое (t0), вычисляется так:

t = t0?(1– v22) (Уравнение 7.6)

На скорости в 260 000 километров в секунду относительно наблюдателя t будет равным t0/2. Другими словами, потребуется час времени наблюдателя на то, чтобы пронаблюдать, как на движущемся объекте проходит полчаса. То есть если на часах наблюдателя было 1.00 и на часах на движущемся объекте было 1.00, то через час на часах наблюдателя будет 2.00, а на часах на движущемся объекте будет только 1.30.

На скорости, равной скорости света, t будет равно 0. Следовательно, для того чтобы соответствовать любому промежутку часов наблюдателя, часам движущегося объекта потребуется вечность. Насколько наблюдатель сможет заметить, часы на движущемся объекте всегда будут показывать 1.00; время на объекте застынет. Это замедление времени в зависимости от движения называется растяжением времени.

Такое положение дел кажется странным, но это было проверено на определенных короткоживущих субатомных частицах. Двигаясь медленно, они распадались за определенное фиксированное время. Двигаясь же очень быстро, они продолжали существовать значительно дольше, прежде чем распадались. Естественно сделать вывод, что мы наблюдали замедление времени для быстро движущихся частиц. Они все еще распадаются через, скажем, одну миллионную секунды, но для нас эта миллионная секунды растягивается из-за того, что частица быстро движется.

Как и в случае с длиной и массой, это изменение времени является только изменением измеряемой величины (пока мы остаемся верными принципам специальной теории) и изменяется вместе с наблюдателем.

Вернемся к примеру, к пролетающим друг мимо друга космическим кораблям Х и Y. Люди на корабле Х, видя, как мимо них пролетает корабль Y со скоростью 260 000 километров в секунду, и наблюдая маятниковые часы на борту корабля Y, будут видеть, что эти часы отбивают секунду за две секунды времени. Все на корабле Y будет занимать в два раза больше времени (или так будет казаться наблюдателю на корабле X). Даже атомы будут двигаться со скоростью в два раза меньше положенной.

Люди на корабле Y конечно же не знают об этом. Считая себя находящимися в покое, они будут настаивать на том, что это на корабле X время замедленно. (На самом деле, если бы корабли пролетали друг мимо друга таким образом, чтобы каждому скорость другого казалась равной скорости света, каждый настаивал бы на том, что на другом корабле время полностью остановилось.)

Однако вопрос о времени хитрее, чем вопрос о длине и массе. Если космические корабли после такой мимолетной встречи сопоставить вместе в состоянии покоя, их длина и масса снова станут «нормальными» и никаких следов их изменений не останется, поэтому вопрос «реальности» отпадает.

Но что касается времени… Находясь во взаимном покое, часы снова идут на обоих кораблях в одинаковом темпе. Однако следы от предыдущих расхождений во времени остаются. Если одни часы были замедленны и в прошлом проходили только полчаса, пока другие проходили час, то теперь первые часы будут на полчаса отставать! Каждый корабль будет твердо настаивать, что на другом часы отмеряли время медленнее, и каждый будет ожидать, что часы другого отстали.

Будет ли так? Будут ли чьи-либо часы отставать? А если да, то чьи?

Это парадокс часов, который хорошо известен физикам.

Если четко придерживаться условий специальной теории, то есть если оба корабля вечно продолжают равномерное движение, парадокса часов не будет. В этом случае они никогда больше не встретятся, и различие в измерениях останется непроверяемым на предмет «реальности».

Для того чтобы корабли сошлись вместе, как минимум, один из них должен замедлиться, выполнить поворот, набрать скорость и догнать другой.

Все это — неравномерное движение, или ускорение, что тут же выводит нас за рамки специальной теории.

Эйнштейн работал над подобными проблемами десять лет после провозглашения своей специальной теории и в 1915 году опубликовал общую теорию относительности, в которой рассматриваются последствия неравномерного, или ускоренного, движения. Это более тонкий и сложный аспект относительности, чем специальная теория, и не все физики-теоретики полностью согласны с выводами обшей теории.

Предположим, что наши космические корабли — одни во Вселенной. Корабль Y замедляет движение, разворачивается и ускоряется так, чтобы стать бок о бок с кораблем X. Но по принципам относительности люди на корабле Y имеют полное право считать себя находящимися в покое. А если они рассматривают себя как находящихся в покое, то, с их точки зрения, это корабль X замедляет движение, разворачивается и ускоряется так, чтобы вернуться к ним. То, что люди с корабля X наблюдают по отношению к кораблю Y, то люди на корабле Y наблюдают по отношению к кораблю X. Поэтому вполне возможно, что, когда корабли в конце концов окажутся бок о бок, часы на них каким-то образом покажут одно и то же время.

Однако на самом деле этого не произойдет, потому что эти корабли во Вселенной не одни. Вселенная наполнена большим количеством материи, и присутствие этого количества материи разрушает симметрию ситуации кораблей X и Y.

Так, если корабль Y выполняет разворот, корабль X наблюдает, как он это делает. Но, считая себя находящимся в покое, корабль X продолжает видеть, как вся остальная Вселенная (звезды и галактики) пролетают мимо него с постоянной равномерной скоростью, отражающей его собственную постоянную равномерную скорость. Другими словами, корабль X видит, что корабль Y, и только он, проделывает неравномерное движение.

С другой стороны, если корабль Y считает себя находящимся в покое, он наблюдает, что не только корабль X подвергается ускорению, но и вся остальная Вселенная вместе с ним.

Другими словами, оба корабля подвергаются неравномерному движению относительно друг друга, но Вселенная в целом подвергается неравномерному движению только относительно корабля Y. Два корабля, вполне естественно, подвергаются разному воздействию вследствие огромной разницы в их истории, и когда их сводят вместе, то именно на корабле Y (который подвергался неравномерному движению по отношению ко всей Вселенной) часы будут отставать. Парадокса нет, поскольку получится, что команды обоих кораблей наблюдали неравномерное движение Вселенной по отношению к кораблю Y и оба согласны по поводу разницы в истории кораблей и не могут спрятаться за утверждение «моя система отсчета не хуже, чем твоя».

Теперь предположим, что космический путешественник покидает Землю и по прошествии некоторого времени удаляется от нас со скоростью, близкой к световой. Если бы мы могли наблюдать, как он путешествовал, мы бы видели, как его время проходит раз в сто медленнее, чем наше. Если бы он наблюдал нас, он бы видел, как наше время проходит в сто раз медленнее, чем его. Другими словами, если бы, поворачивая, он настаивал на том, что находится в покое, ему пришлось бы тогда признать, что вся Вселенная поворачивается вокруг него. Эффектом этого будет уменьшение промежутка времени для него, если речь идет и о нем, и о оставшихся дома землянах.

Путь туда-обратно может показаться ему длившимся всего год, но на Земле может пройти сто лет. Если бы у нашего космонавта был брат-близнец, оставшийся на Земле, этот брат давно мог умереть от старости, в то время как наш космонавт едва ли постарел бы. (Это называется парадоксом близнецов.) Однако важно понимать, что космический путешественник не обнаружил источника вечной молодости. Он мог состариться только на год за земной век, но он и прожил за этот земной век всего год. Более того, независимо от его скорости время ни для него, ни для его наблюдателей, находящихся на Земле, не повернет вспять. Моложе он никогда не станет.

Изменяемость времени в зависимости от изменений скорости разрушает наши представления об абсолютности времени. Из-за этого становится невозможным определить время события таким образом, чтобы все наблюдатели согласились с этим. Вдобавок к этому время ни одного события не может быть определено, пока информация об этом событии не дойдет до наблюдателя, а эта информация может распространяться только со скоростью света.

В качестве простого примера давайте представим, что космический путешественник возвращается на Землю, для него прошел один год, и он обнаруживает, что его брат-близнец умер пятьдесят лет назад по земному времени. Для путешественника это может показаться невозможным, ведь по его меркам пятьдесят лет назад его брат еще не родился.

На самом деле в математическом обосновании теории относительности нет смысла работать отдельно с пространством или отдельно со временем. Вместо этого уравнения описывают их объединение (обычно именуемое пространство-время). Чтобы разместить точку на прстранстве-времени, надо назвать координаты на каждом из трех пространственных измерений и значение времени; время при этом рассматривается как подобное (хоть и не в точности) трем обычным измерениям. Именно в этом смысле время называют «четвертым измерением».

Иногда утверждают, что существование относительного времени позволяет измерять скорости больше световой. Допустим, к примеру, что космический корабль летит от Земли до некоей планеты, находящейся на расстоянии десяти световых лет, и делает это так быстро, что вследствие растяжения времени команде кажется, что путешествие заняло всего год.

Поскольку корабль, путешествуя всего год, прошел расстояние, на преодоление которого свету требуется десять лет, не означает ли это, что он двигался со скоростью в десять раз больше световой?

Правильный ответ — не означает. Если бы члены команды начали отстаивать это мнение, они бы измеряли промежуток времени в один год в своей собственной системе отсчета, а расстояние от планеты до Земли (десять световых лет) — в системе отсчета Земли. Вместо этого им следовало бы спросить: каково расстояние от Земли до планеты в системе отсчета корабля?

В системе отсчета корабля корабль, разумеется, неподвижен, а Вселенная в то же время, включая Землю и планету-цель, проскакивает назад на огромной скорости. Вся Вселенная сокращена, как и следует ожидать из сокращения Фитцджеральда (см. гл. 6), и расстояние от Земли до конечной планеты гораздо меньше чем десять световых лет. На самом деле оно меньше одного светового года, так что корабль может преодолеть это расстояние за один год, не превышая скорости света.

Опять же, хотя кораблю потребовался всего год, чтобы добраться до цели, это не значит, что он обогнал свет, даже несмотря на то, что лучу света, вылетевшему с Земли одновременно с кораблем, потребуется десять лет на то, чтобы преодолеть расстояние в десять световых лет. Этот промежуток — десять световых лет — будет истинным только в рамках земной системы отсчета. В собственной же системе отсчета луча, поскольку он движется со скоростью света, затраченное время сократится до нуля, и луч света попадет на альфу Центавра (или любое другое место во Вселенной, сколь угодно удаленное), не тратя на это времени вообще.

Это нельзя использовать как аргумент в пользу того, что в системе отсчета светового луча его скорость в таком случае бесконечна, поскольку в собственной системе отсчета светового луча вся толща Вселенной сокращается до нуля в направлении его движения. Пересечение Вселенной нулевой толщины не займет у света времени, даже если скорость конечна и составляет всего 300 000 километров в секунду.