Свобода выбора

We use cookies. Read the Privacy and Cookie Policy

Хотя мы описали объединение возможных историй только на двух специальных примерах, такой ход размышлений о квантовой механике является общим. В то время как классическая физика описывает настоящее как имеющее единственное прошлое, вероятностные волны квантовой механики расширяют арену истории: в формулировке Фейнмана наблюдаемое настоящее представляет смесь — особый вид усреднения — всех возможных прошлых, совместимых с тем, что мы сейчас наблюдаем.

В случае экспериментов с двумя щелями и светоделителем электрон или фотон имеют два пути от источника до экрана детектора — налево или направо — и только при комбинировании возможных историй мы приходим к объяснению того, что наблюдаем. Если барьер имеет три щели, мы должны принять во внимание три вида событий; с 300 щелями нам необходимо учитывать всё множество возможных результирующих событий. В крайнем случае, если мы представим, что прорезано гигантское количество щелей, — фактически так много, что барьер исчезает, — квантовая физика говорит, что каждый электрон будет двигаться по любой возможной траектории к выделенной точке на экране, и только объединяя вероятности, связанные с каждой такой историей, мы можем объяснить итоговые данные. Это может звучать странно. (Это и есть странно.) Но такое причудливое рассмотрение прошедшего времени объясняет данные на рис. 4.4, 7.1б и любой другой эксперимент, проводимый с микромиром.

Насколько буквально нужно принимать описание через сумму по историям? Электрон, который попадает на экран детектора, действительно проходит вдоль всех возможных путей, или рецепт Фейнмана есть просто хитрая математическая выдумка, дающая правильный ответ? Этот вопрос находится среди ключевых для оценки истинной природы квантовой реальности, так что я хотел бы дать вам определённый ответ. Но не могу. Физики считают такой подход очень удобным для представления огромного числа объединяемых историй; я использую его в собственных исследованиях настолько часто, что он ощущается реальным. Но мы не говорим, что это действительно реально. Суть в том, что квантовые вычисления дают нам вероятность попадания электрона в ту или иную точку экрана, и эти предсказания согласуются с данными опыта, с пятнами на экране. Поскольку речь идёт о проверке теории и её предсказательной силы, не так уж существенно, как именно электрон достигает данной точки на экране.

Но, продолжаете настаивать вы, мы можем выяснить, что же происходит на самом деле, изменив экспериментальные условия так, чтобы мы смогли теперь наблюдать и предполагаемую размытую смесь возможных прошлых, вливающихся в наблюдаемое настоящее. Это хорошее предложение, но нам уже известно, что имеется препятствие. В главе 4 мы узнали, что волны вероятности непосредственно ненаблюдаемы; а поскольку объединяющиеся истории Фейнмана есть ничто иное, как особый способ размышлений о вероятностных волнах, они тоже должны ускользать от прямых наблюдений. И они ускользают. Наблюдения не могут выхватить отдельные индивидуальные истории; скорее наблюдения отражают среднее по всем возможным историям. Поэтому если вы измените условия опыта так, чтобы наблюдать электроны в полёте, то обнаружите, что каждый электрон проходит через ваш дополнительный детектор в том или ином месте; но вы никогда не увидите какую-то размытую множественную историю. Когда вы используете квантовую механику для объяснения, почему вы видели электрон в том или ином месте, ответ будет включать усреднение по всем возможным историям, которые могут привести к этому промежуточному наблюдению. Но само наблюдение имеет доступ только к историям, которые уже соединены. Наблюдая за электроном в полёте, вы просто сдвигаете назад обозначение того, что вы считаете историей. Квантовая механика жёстко операциональна: она объясняет, что вы видите, но не позволяет вам видеть объяснение.

Вы можете спросить далее: почему тогда классическая физика — физика здравого смысла, — которая описывает движение в терминах единственной истории и траектории, вообще имеет отношение к Вселенной? Почему она так хорошо работает в объяснениях и предсказаниях движения чего угодно, от бейсбольного мяча до планет и комет? Почему в каждодневной жизни нет подтверждений того странного пути, по которому прошлое, по-видимому, разворачивается в настоящее? Причина, уже коротко обсуждавшаяся в главе 4, и которую мы вскоре изучим более подробно, состоит в том, что бейсбольные мячи, планеты и кометы относительно велики, как минимум по сравнению с частицами вроде электрона. А в квантовой механике чем больше что-то, тем более неравноправным становится усреднение: все возможные траектории дают вклад в движение бейсбольного мяча в полёте, но обычный путь — один единственный путь, предсказываемый законами Ньютона, — даёт намного больший вклад, чем все остальные пути. Для больших объектов классические пути дают в огромной степени больший вклад в процесс усреднения, так что они и являются единственными, к которым мы привыкли. Но когда объекты малы, подобно электронам, кваркам и фотонам, многие различные истории вносят вклад ориентировочно одного порядка, следовательно, все они играют важную роль в процессе усреднения.

Наконец, вы можете спросить: что такого особенного в акте наблюдения или измерения, что он может вынудить все возможные истории соединиться вместе и дать единственный результат? Как акт наблюдения говорит частице, что пора подвести итог историям, усреднить их и зафиксировать определённый итог? Почему люди и сделанное ими оборудование имеют такую особую силу? Особая ли она? Или, может быть, акт наблюдения является специальным случаем некоторого более общего влияния внешней среды, и мы, квантово-механически говоря, не такие уж особые, в конце концов? Мы будем обсуждать эти трудные и спорные вопросы во второй половине этой главы, поскольку они не только являются центральными для понимания природы квантовой реальности, но они дают хорошую основу для размышлений о квантовой механике и стреле времени.

Вычисление квантово-механических средних требует хорошей технической подготовки. Полное понимание того, как, когда и где подсчитываются средние, требует концепций, над формулировками которых физики интенсивно работают до сих пор. Но один ключевой урок может быть извлечён легко: квантовая механика представляет собой арену предельно свободного выбора: каждый возможный «выбор», который может быть сделан при переходе объекта отсюда туда, включён в квантово-механическую вероятность, связанную с соответствующим переходом.

Классическая и квантовая физика трактуют прошлое очень по-разному.