Эйнштейн, неопределённость и вопрос реальности

We use cookies. Read the Privacy and Cookie Policy

Важный вопрос, который уже мог прийти вам на ум, заключается в том, отражает ли принцип неопределённости то, что мы можем знать о реальности, или саму реальность? Имеют ли все объекты Вселенной на самом деле определённое положение и скорость, как мы себе обычно представляем в повседневной жизни (взлетающий бейсбольный мяч, бегун на дорожке, подсолнух, медленно поворачивающийся вслед за Солнцем), но квантовая неопределённость говорит нам, что в принципе невозможно знать эти характеристики одновременно? Или же квантовая неопределённость полностью разрушает наши классические представления, утверждая, что неверен классический перечень атрибутов, приписываемый нами реальности, и начинающийся с положения и скорости объектов? Говорит ли квантовая неопределённость о том, что в любой заданный момент времени частицы просто не имеют определённого положения и определённой скорости?

Для Бора эта проблема была чем-то вроде коана дзен-буддизма.[26] Физика имеет дело только с тем, что можно измерить. С точки зрения физики это и есть реальность. Пытаться использовать физику для анализа «более глубокой» реальности, находящейся за пределами того, что мы можем знать посредством измерений, — это всё равно, что задействовать физику для анализа звука хлопка одной ладони. Но в 1935 г. Эйнштейн вместе с двумя коллегами, Борисом Подольским и Натаном Розеном, поднял эту проблему таким убедительным и хитрым образом, что начинавшееся тогда как хлопок одной ладони отозвалось через пятьдесят лет раскатом грома, возвестившим о начале гораздо большего переворота в нашем понимании реальности, чем представлялось когда-либо даже Эйнштейну.

Целью статьи Эйнштейна–Подольского–Розена было показать, что хотя квантовая механика, безусловно, успешно предсказывает и объясняет результаты измерений, но она не может быть последним словом в физике микромира. Их стратегия была проста: они хотели показать, что каждая частица на самом деле имеет определённое положение и определённую скорость в любой заданный момент времени, откуда следовало бы, что принцип неопределённости выражает фундаментальную ограниченность подхода квантовой механики. Если каждая частица занимает определённое положение и имеет определённую скорость, но квантовая механика не в состоянии определить их одновременно, значит она даёт лишь частичное описание Вселенной. Поэтому квантовая механика является неполной теорией физической реальности и, возможно, лишь верстовым столбом на пути к более глубокой теории, которую ещё предстоит открыть. В действительности, как мы увидим, они заложили фундамент для демонстрации кое-чего ещё более грандиозного: нелокальности квантового мира.

Работа Эйнштейна, Подольского и Розена (ЭПР) была отчасти вызвана грубым объяснением, которое дал Гейзенберг принципу неопределённости: измеряя положение чего-либо, вы неизбежно вносите возмущение в движение и, тем самым, лишаете себя возможности одновременно точно определить скорость этого объекта. Хотя, как мы видели, квантовая неопределённость носит более общий характер, чем это объясняется с помощью «возмущения», Эйнштейн, Подольский и Розен изобрели нечто, что, должно было бы убедительно и хитроумно устранить любой источник неопределённости. Что если бы мы смогли косвенно получить точную информацию как о положении, так и скорости частицы, не вступая с ней контакт? — предположили они. Используя классическую аналогию, представим, к примеру, что Род и Тодд Фландерсы[27] решили прогуляться по только что возникшей в Спрингфилде ядерной пустыне. Они встали спиной к спине в центре пустыни и договорились идти прямо вперёд в противоположных направлениях и с одинаковой скоростью. Затем представьте, что девять часов спустя их отец, Нед, вернувшись после своего восхождения на Пик Спрингфилда, откуда он заметил, где находится Род, бежит к нему и с тревогой спрашивает, где же Тодд. К этому времени Тодд ушёл уже далеко, но, расспросив Рода и зная, где находится Род, Нед тем не менее может многое узнать о Тодде. Если Род находится точно в 45 км к востоку от стартовой точки, то Тодд должен находиться точно в 45 км к западу от неё. Если Род шагает со скоростью точно 5 км/ч на восток, то Тодд должен шагать точно со скоростью 5 км/ч на запад. Так что даже если Тодда и Неда разделяет 90 км, Нед может определить положение и скорость Тодда, пусть и косвенно.

Эйнштейн с коллегами применил аналогичный подход к квантовой области. При некоторых хорошо изученных физических процессах из одного места могут испускаться две частицы с характеристиками, которые соотносятся примерно тем же способом, как движение Рода и Тодда. Например, если одна частица распадается на две частицы одинаковой массы, разлетающиеся в противоположных направлениях (подобно тому как взрыв разбрасывает два осколка в разные стороны), что является обычным делом в царстве физики субатомных частиц, то скорости этих двух частиц будут равными и противоположными. Более того, положения этих частиц будут также тесно связаны друг с другом, и для простоты можно считать, что они всегда находятся на одинаковом расстоянии от своего места возникновения.

Важное различие между классическим примером с Родом и Тоддом и квантовым описанием двух частиц состоит в том, что, хотя мы можем наверняка сказать, что есть точная связь между скоростями двух частиц, — если наблюдением установлено, что одна двигается влево с какой-то скоростью, то вторая обязательно будет двигаться вправо с той же скоростью, — однако мы не можем предсказать, с какой именно скоростью двигаются частицы. Используя законы квантовой физики, мы можем в лучшем случае лишь предсказать вероятность, с которой частицы имеют ту или иную скорость. Аналогично, хотя мы можем наверняка сказать, что есть точная связь между положениями двух частиц, — если измерение показало, что одна находится в таком-то месте в данный момент, то вторая обязательно будет находиться на том же расстоянии, но в противоположном направлении от начальной точки, — но мы не можем предсказать, где именно находится каждая частица. В лучшем случае мы можем предсказать лишь вероятность того, что одна из частиц находится в том или ином месте. Таким образом, хотя квантовая механика не даёт точного ответа на вопрос, где находятся частицы и какова их скорость, но в определённых условиях она делает точные утверждения, касающиеся взаимосвязи скоростей и положений частиц.

Эйнштейн, Подольский и Розен попытались использовать эти взаимосвязи, чтобы показать, что каждая из частиц на самом деле имеет определённое положение и определённую скорость в любой заданный момент времени. И вот что они предложили: представьте, что вы измеряете положение летящей вправо частицы и тем самым косвенно узнаёте положение летящей влево частицы. ЭПР утверждают, что поскольку вы ничего, абсолютно ничего не делали с летящей влево частицей, она должна была иметь это положение, и вы определили его, хотя и косвенно. Затем ЭПР замечают, что вместо измерения положения летящей вправо частицы вы могли бы измерить её скорость. В этом случае вы бы косвенно определили скорость летящей влево частицы, никак её не затронув. И опять же, — утверждают ЭПР, — поскольку вы ничего, абсолютно ничего не делали с летящей влево частицей, то она должна иметь именно эту скорость, и вы определили эту скорость. Объединяя оба случая вместе — измерение, которое вы сделали, и измерение, которое вы могли бы сделать, — ЭПР заключают, что летящая влево частица имеет определённое положение и определённую скорость в любой заданный момент времени.

Поскольку это место тонкое и очень важное, позволю себе повторить сказанное немного другими словами. ЭПР утверждают, что измеряя характеристики летящей вправо частицы, вы никак не можете повлиять на летящую влево частицу, поскольку это отдельные, пространственно разделённые частицы. Летящая влево частица совершенно не ведает о том, что вы сделали или могли сделать с летящей вправо частицей. Во время проведения измерений эти частицы могли разделять метры, километры или световые годы, так что летящей влево частице всё равно, что вы делаете с правой. Значит, любая характеристика летящей влево частицы, которую вы в действительности узнали или в принципе могли узнать путём исследования летящей вправо частицы, должна иметь вполне определённое и уже существующее значение, совершенно независимо от ваших измерений. А поскольку, измерив положение правой частицы, вы узнаёте положение левой частицы, а измерив скорость правой частицы, вы узнаёте скорость левой частицы, то летящая влево частица в действительности имеет и определённые положение, и определённую скорость. Конечно, всё это рассуждение может быть проведено и в том случае, если поменять роли частиц (и, фактически, до проведения измерения мы даже не можем сказать, какая частица летит влево, а какая вправо); следовательно, обе частицы имеют определённые положения и скорости.

Таким образом, — заключают ЭПР, — квантовая механика не полностью описывает реальность. Частицы имеют определённые положения и скорости, но квантово-механический принцип неопределённости показывает, что эти характеристики реальности находятся за пределами того, чем может оперировать теория. Если в соответствии с этим и в согласии с большинством других физиков вы верите, что полная теория природы должна описывать каждый атрибут реальности, то неспособность квантовой механики описывать одновременно положения и скорости частиц означает, что она упускает некоторые атрибуты и, следовательно, не является полной теорией; она не является последним словом. Вот что решительно отстаивали Эйнштейн, Подольский и Розен.