Поля в охлаждающейся Вселенной

We use cookies. Read the Privacy and Cookie Policy

Поля реагируют на температуру примерно так же, как и обычная материя. Чем выше температура, тем больше будет величина вибрации поля — подобно поверхности бурно кипящего котелка воды. При низкой температуре, характерной сегодня для глубокого космоса (2,7° выше абсолютного нуля или, как это обычно обозначается, 2,7K — по Кельвину), или даже при более высоких температурах здесь на Земле такая вибрация поля ничтожна. Но температура сразу после Большого взрыва была столь огромна (считается, что через 10?43 с после Большого взрыва температура была около 1032K), что все поля колебались со страшной силой.

По мере того как Вселенная расширялась и охлаждалась, начальная гигантская плотность материи и излучения неуклонно падала, безбрежные просторы Вселенной становились всё более пустыми и колебания поля ослабевали. Для большинства полей это означало, что их величина в среднем стремилась к нулю. В некоторый момент величина определённого поля может подняться немного выше нуля (пик), моментом позже она может опуститься немного ниже нуля (впадина), но в среднем величина большинства полей близка к нулю — к величине, которую мы интуитивно ассоциируем с отсутствием чего-либо или с пустотой.

Именно тут проявляет себя поле Хиггса. Исследователи пришли к пониманию, что имеется множество полей, которые имеют сходные свойства при огромных температурах сразу после Большого взрыва: они неистово колеблются вверх-вниз. Но исследователи уверены, что когда температура Вселенной существенно упала, поле Хиггса сконденсировалось в особую ненулевую величину по всему пространству (точно так же, как пар конденсируется в жидкую воду, когда его температура существенно падает). Физики говорят об этом как о возникновении ненулевой величины вакуумного среднего поля Хиггса — но, чтобы упростить технический жаргон, я буду говорить об этом как о формировании Хиггсова океана.

Это похоже на то, что будет происходить, если вы посадите лягушку в горячую металлическую чашу, как показано на рис. 9.1а, с кучей червяков в центре. Сначала лягушка будет прыгать так и сяк — высоко вверх, вниз, влево, вправо — в отчаянных попытках спасти свои лапы от ожога, и в среднем будет находиться так далеко от червяков, что даже не будет знать, что они здесь есть. Но по мере остывания чаши лягушка будет успокаиваться, будет прыгать слабее и мягко скатится в наиболее спокойное место на дне чаши. Там, приблизившись к центру чаши, она, наконец, встретится со своим ужином, как показано на рис. 9.1б.

Рис. 9.1. (а) Лягушка, брошенная в горячую металлическую чашу, постоянно прыгает по ней. (б) Когда чаша остывает, лягушка успокаивается, прыгает намного меньше и скатывается вниз к середине чаши. (в) Как и на рис. а, но с горячей чашей иной формы. (г) Как и на рис. б, но теперь, когда чаша остывает, лягушка соскальзывает вниз в жёлоб, который находится на некотором расстоянии от центра чаши (где находятся червяки)

Но если чаша имеет иную форму, как показано на рис. 9.1в, события будут разворачиваться иначе. Представьте снова, что чаша сначала очень горяча и кучка червяков опять лежит в центре чаши, но теперь центр приподнят в виде возвышения. Если вы посадите в чашу лягушку, она опять будет неистово прыгать туда-сюда, оставаясь в неведении относительно приза, возвышающегося по центру. Теперь, когда чаша остынет, лягушка успокоится, уменьшит свои прыжки и сползёт вниз по скользкой стенке чаши. Но из-за новой формы лягушка никогда не достигнет центра чаши. Вместо этого она сползёт к жёлобу чаши и останется на расстоянии от кучи червяков, как показано на рис. 9.1г.

Если мы представим, что расстояние между лягушкой и кучкой червяков представляет величину поля, — чем дальше лягушка от червяков, тем больше величина поля, — а высота положения лягушки представляет энергию, содержащуюся в такой величине поля, — чем выше в чаше оказывается лягушка, тем большую энергию содержит поле, — то эти примеры хорошо показывают поведение полей при охлаждении Вселенной. Когда Вселенная горяча, поля неистово мечутся от одного значения к другому, почти как лягушка, прыгающая с места на место в чаше. Когда Вселенная охлаждается, поля «успокаиваются», прыгают реже и не столь безумно, и их величина сползает вниз к меньшей энергии.

Но есть одно обстоятельство. Как и в примере с лягушкой, имеется возможность двух качественно разных исходов. Если форма чаши энергии поля — так называемая потенциальная энергия — подобна рис. 9.1а, величина поля во всём пространстве будет сползать всеми способами вниз, к нулю, к центру чаши, точно так же, как лягушка разными способами соскальзывает к куче червяков. Однако если потенциальная энергия выглядит подобно рис. 9.1в, величина поля не будет стремиться к нулю, т. е. к центру энергетической чаши. Вместо этого, точно так же, как лягушка соскользнёт в жёлоб, который находится на ненулевом расстоянии от кучки червяков, величина поля также сползёт вниз в жёлоб, расположенный на ненулевом расстоянии от центра чаши, — и это означает, что поле будет иметь ненулевую величину.{119} Такое поведение и является характерным для полей Хиггса. Когда Вселенная остывает, величина поля Хиггса застревает в жёлобе и никогда не становится нулевой. А поскольку то, что мы описываем, будет происходить однородно во всём пространстве, то Вселенная будет пропитана однородным и ненулевым полем Хиггса — Хиггсовым океаном.

Причина, по которой это происходит, проливает свет на фундаментальную особенность полей Хиггса. Когда область пространства становится всё холоднее и всё более пустой — когда материя и излучение становятся всё более разреженными, — энергия в области становится всё более низкой. В предельном случае можно получить наипустейшую область пространства, понижая её энергию настолько, насколько это возможно. Для обычных полей их вклад в энергию будет наименьшим, когда их величина как-нибудь скатится вниз к центру чаши, как на рис. 9.1б; они имеют нулевую энергию, когда их величина равна нулю. Это имеет интуитивно ясный смысл, поскольку мы ассоциируем опустение области пространства с обращением всего, включая величины полей, в нуль.

Но в случае поля Хиггса дела обстоят иначе. Точно так же, как лягушка может достичь центральной площадки на рис. 9.1в и сократить до нуля расстояние к кучке червяков, только если она имеет достаточно энергии, чтобы допрыгнуть до неё из окружающего площадку жёлоба, поле Хиггса может достичь центра энергетической чаши и принять нулевое значение, только если оно имеет достаточный запас энергии, чтобы преодолеть выпуклость в центре чаши. Если, напротив, лягушка имеет мало энергии или совсем её не имеет, она соскальзывает в жёлоб как на рис. 9.1г — на ненулевое расстояние от кучки червяков. Аналогично, поле Хиггса с малой энергией или без энергии также сползёт в жёлоб чаши — на ненулевое расстояние от центра чаши, значит, будет иметь ненулевую величину.

Чтобы заставить поле Хиггса иметь нулевую величину — величину, которая выглядела бы наиболее близкой к полному отсутствию поля в пространстве, величину, которая казалась бы наиболее близкой к состоянию пустоты, — вы должны были бы повысить его энергию и, говоря на языке энергий, область пространства была бы не столь пуста, как она, возможно, могла бы быть. Хотя это и звучит противоречиво, но удаление поля Хиггса — т. е. уменьшение его величины до нуля — равносильно добавлению энергии в область пространства. В качестве грубой аналогии вспомним о прекрасных шумоподавляющих наушниках, которые производят звуковые волны, гасящие волны, приходящие из окружающей среды. Если наушники работают идеально, вы слышите тишину, когда они производят свой звук, но вы слышите внешний шум, если вы их выключаете. Исследователи пришли к мысли, что точно так же, как вы слышите меньше шума, когда наушники производят звук, на который они запрограммированы, так и пустое холодное пространство заключает в себе настолько мало энергии, насколько это возможно, — оно настолько пусто, насколько это может быть, — когда оно наполнено Хиггсовым океаном.

Процесс, в котором поле Хиггса приобретает ненулевую величину во всём пространстве, — процесс формирования Хиггсова океана — называетсяспонтанным нарушением симметрии[61] и является одной из наиболее важных идей, появившихся в теоретической физике последних десятилетий XX в. Давайте посмотрим, почему.