Сила, материя и поля Хиггса

We use cookies. Read the Privacy and Cookie Policy

Поля являются основой большей части современной физики. Электромагнитное поле, обсуждавшееся в главе 3, является, возможно, простейшим и наиболее хорошо известным из полей природы. Проводя жизнь среди радио и телевизионных передач, сотовых телефонов, солнечного тепла и света, мы все постоянно купаемся в море электромагнитных полей. Фотоны являются элементарными составляющими электромагнитных полей и могут рассматриваться как микроскопические переносчики электромагнитной силы. Когда вы что-нибудь видите, вы можете думать об этом в терминах волнового электромагнитного поля, входящего в ваш глаз и стимулирующего сетчатку, или как о частицах-фотонах, входящих в ваш глаз и делающих то же самое. По этой причине фотон иногда описывается как частица — переносчик электромагнитной силы.

Гравитационное поле также привычно, поскольку оно постоянно и надёжно удерживает нас и всё, что нас окружает, на земной поверхности. Как и в случае с электромагнитными полями, мы все погружены в море гравитационных полей; Земля здесь доминирует, но мы также чувствуем гравитационное поле Солнца, Луны и других планет. Точно так же, как фотоны являются частицами, составляющими электромагнитное поле, физики уверены, что частицами, составляющими гравитационное поле, являются гравитоны. Гравитоны до сих пор не открыты экспериментально, но это и не удивительно. Гравитация намного слабее всех сил (например, обычный магнит, который висит на вашем холодильнике, может поднять скрепку для бумаги, преодолев гравитационное притяжение всей Земли), так что вполне понятно, что экспериментаторы ещё не обнаружили мельчайшие составляющие слабейшей силы. Однако даже без экспериментального подтверждения большинство физиков уверено, что точно так же, как фотоны передают электромагнитную силу (являются переносчиками электромагнитных сил), гравитоны передают гравитационную силу (являются переносчиками сил тяготения). Когда вы роняете стакан, то можете думать о происходящем в терминах гравитационного поля Земли, притягивающего стакан; либо, используя более изощрённое геометрическое описание Эйнштейна, вы можете представить, как стакан соскальзывает вдоль углубления в ткани пространства-времени, вызванного присутствием Земли; либо — если гравитоны на самом деле существуют — вы можете также думать об этом как об обмене гравитонами между Землёй и стаканом. Гравитоны передают гравитационное «сообщение», которое «приказывает» стакану падать на Землю.

Кроме этих хорошо известных силовых полей имеются две другие силы природы, сильное ядерное взаимодействие и слабое ядерное взаимодействие, и они также переносятся полями. Ядерные силы не так привычны, как электромагнетизм и гравитация, поскольку они действуют только на атомных и субатомных масштабах. Но даже при этом их влияние на повседневную жизнь благодаря ядерным реакциям, заставляющим Солнце светить, ядерным реакциям, сопровождающим работу атомных реакторов, а также радиоактивному распаду элементов, таких как уран и плутоний, не менее важно. Поля сильного и слабого ядерного взаимодействия называются полями Янга–Миллса в честь Чжэньнина Янга и Роберта Миллса, которые в 1950-е гг. разработали основы теории таких полей. И точно так же, как электромагнитные поля составлены из фотонов, а поля тяготения, как мы думаем, должны быть составлены из гравитонов, сильные и слабые поля тоже имеют частицы в качестве своих составляющих. Частицы сильного взаимодействия называются глюонами, а частицы слабого взаимодействия называются W- и Z-частицами. Существование этих частиц было подтверждено экспериментами на ускорителях, проведёнными в Германии и Швейцарии в конце 1970-х и начале 1980-х гг.

Поля имеют отношение также и к материи. Грубо говоря, вероятностные волны квантовой механики можно представить как поля, заполняющие пространство, которые определяют вероятность, с которой та или иная частица материи находится в том или ином месте. Например, электрон может рассматриваться как частица — одна из тех, что могут оставить точку на фосфоресцирующем экране, как на рис. 4.4, — но он может (и должен) также рассматриваться в терминах волнового поля, которое может дать интерференционную картину на фосфоресцирующем экране, как на рис. 4.3б.{116} Фактически, хотя я не хочу здесь вдаваться в подробности,{117} вероятностная волна электрона тесно связана с объектом, который называется электронным полем — полем, которое во многих отношениях сходно с электромагнитным полем, но в котором электрон играет роль, аналогичную фотону, будучи мельчайшей составляющей электронного поля. Полевое описание того же типа справедливо и для всех других разновидностей частиц материи.

Вы можете подумать, что мы охватили всё, рассмотрев материальные и силовые поля. Но существует общее убеждение, что на этом дело далеко не кончается. Многие физики твёрдо уверены, что имеется ещё третий тип поля, который пока экспериментально не обнаружен, но который в течение последней пары десятилетий играл центральную роль как в новейших космологических теориях, так и в физике элементарных частиц. Это поле называется полем Хиггса в честь шотландского физика Петера Хиггса.{118} И если идеи следующего раздела верны, то вся Вселенная пронизана океаном поля Хиггса — холодным следом Большого взрыва, — который отвечает за многие свойства частиц, из которых состоите вы и я, и всё, с чем мы сталкиваемся.