4. Дифракция электронов

4. Дифракция электронов

Итак, мы показали, как идеи автора этой книги о связи между волнами и частицами и о необходимости создания новой механики волнового характера приобрели к 1926 г. благодаря превосходным работам Шредингера необычайную полноту и точность. Однако какими бы замечательными ни были руководящие идеи и основные методы, какими бы точными ни казались подтверждения, которые были получены благодаря правильным предсказаниям атомных явлений, прямое экспериментальное доказательство этих представлений все же отсутствовало. Такое доказательство принес 1927 г., когда Дэвиссон и Джермер открыли явление дифракции электронов.

Поскольку движение частиц неразрывно связано с распространением волны, было бы очень странно, если бы материальные частицы, например электроны, не проявляли интерференционных и дифракционных свойств подобно тому, как это происходит с фотонами и изучением которых занимается физическая оптика. Чтобы выяснить, какие из этих явлений можно реально наблюдать, нужно было прежде всего оценить длину волн, связанных с электронами. Формулы волновой механики немедленно дают ответ на этот вопрос: длина волны, связанной с электронами, при обычных условиях всегда очень мала, порядка длины волны рентгеновских лучей. Поэтому можно было надеяться наблюдать у электронов те явления, которые происходят с рентгеновскими лучами.

Известно далее, что фундаментальное явление физики рентгеновских лучей – это дифракция на кристаллах. Необычайно малая длина волны рентгеновских лучей почти исключает возможность использования для наблюдения их дифракции приборов, сделанных руками человека. К счастью, сама природа позаботилась о том, чтобы создать годные для этих целей дифракционные решетки – кристаллы.

Действительно, в кристаллах атомы и молекулы расположены в правильном порядке и образуют трехмерную решетку. Причем оказалось, что расстояние между частицами в кристалле как раз порядка длины волны рентгеновских лучей. Направляя пучок рентгеновских лучей на кристалл, можно получить дифракционную картину, совершенно аналогичную картине дифракции обычного света на трехмерной точечной решетке.

Явление дифракции рентгеновских лучей было открыто в 1912 г. фон Лауэ, Фридрихом и Книппингом, и теперь оно служит основой широкого развития рентгеновской спектроскопии. Исходя из всего этого, можно было ожидать, что совершенно аналогичное явление можно наблюдать для электронов. Взяв пучок электронов с заданной кинетической энергией, мы должны были бы наблюдать явление дифракции, такое же, как дифракция рентгеновских лучей. Поскольку структура кристаллов, применяемых в экспериментах такого типа, хорошо изучена различными методами, главным образом с помощью рентгеновских лучей, мы могли бы из полученной при дифракции электронов картины вычислить длину волны, связанную с электронами, и, следовательно, подтвердить правильность соотношения, которое волновая механика предполагает для движущихся частиц и связанных с ними волн.

Дэвиссону и Джермеру, сотрудникам лаборатории «Белл-телефон» в Нью-Йорке, выпала честь открытия дифракции электронов на кристаллах. Бомбардируя кристалл никеля пучком моноэнергетических электронов, они твердо установили, что электроны дифрагируют как волны, и показали, что длина этих волн в точности совпадает с той, какую дают формулы волновой механики. Так было установлено существование этого тонкого явления, предположение о котором за несколько лет до этого вызывало удивление и недоверие физиков.

Повторенное почти одновременно в Англии Дж. П. Томсоном, сыном Дж.Дж. Томсона, применившим совершенно иной метод, явление дифракции электронов вскоре стали наблюдать почти во всех странах. Это явление в разных условиях и при различной постановке опытов изучали Понт во Франции, Рупп в Германии, Кикучи в Японии и многие другие. Вскоре стали известны все его детали. Постепенно было устранено большинство мелких трудностей объяснения этого явления, которые вначале возникли. Этого удалось добиться, когда приняли во внимание, что внутри кристалла показатель преломления волн, связанных с электроном, отличен от единицы. Дифракцию электронов удалось получить и на обычной решетке, использовав почти касательное падение (Рупп), как это было ранее проделано с рентгеновскими лучами (Комптон, Тибо). Таким путем можно прямо сравнить длину волны, связанной с электроном, с шириной линий, нанесенных на металлической поверхности механическим способом.

Как это часто бывает, явление дифракции электронов, как вначале казалось, очень трудно наблюдаемое и требующее высокого искусства экспериментатора, теперь стало относительно простым и повседневным. Приборы для наблюдения явления дифракции стали настолько совершенными, что сегодня это явление можно демонстрировать студентам на лекции. Наконец, условия этих экспериментов варьировались в таких широких пределах, что справедливость основной формулы, выражающей соотношение между свойствами волны и характеристиками частицы, можно считать теперь доказанной во всем интервале энергий от нескольких электрон-вольт до миллиона электрон-вольт. Для больших значений энергии необходимо учитывать релятивистские поправки. Таким образом, косвенно подтверждаются и результаты теории относительности.

Справедливость формулы для длины волны, связанной с частицей, считается сегодня настолько очевидной, что явление дифракции электронов используется уже не для подтверждения этой формулы, а для изучения структуры некоторых кристаллических или частично ориентированных сред. Однако это уже технические применения. Ограничимся замечанием, что эксперименты по дифракции электронов дали великолепное прямое подтверждение представления о связи волн и частиц, которое послужило исходным пунктом для создания новой механики.

Заканчивая этот параграф, уместно отметить, что была получена дифракция не только электронов, но и других частиц. Так же, как и электроны, явление дифракции испытывают протоны и атомы. Подобные эксперименты очень сложны и не столь многочисленны, однако установлено, что даже здесь подтверждаются формулы волновой механики. Это не должно нас удивлять. Связь между волнами и частицами – это, по-видимому, великий закон природы, причем такой дуализм тесно связан с существованием и внутренней сущностью кванта действия. Нет никаких причин считать, что только электроны обладают такими свойствами. Неудивительно, что мы встречаемся с дуализмом волна – частица при изучении всех физических объектов.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг:

Дифракция волн

Из книги автора

Дифракция волн Рассмотрим еще одно важное свойство волн. Мы уже упоминали о нем: волны способны огибать препятствия. Находясь за углом дома, мы хорошо слышим гудок автомобиля, проезжающего по улице. Звук — это волны уплотнений и разрежений воздуха. Если мы слышим звук,


ОТКРЫТИЕ ЭЛЕКТРОНОВ И КВАРКОВ

Из книги автора

ОТКРЫТИЕ ЭЛЕКТРОНОВ И КВАРКОВ Все объекты в атоме — электроны, обращающиеся вокруг ядра, и кварки, удерживаемые глюонами внутри протонов и нейтронов — были экспериментально обнаружены учеными при помощи Миниатюрных «зондов» с высокими энергиями. Мы уже видели, что


Глава 10 Веселое племя электронов

Из книги автора

Глава 10 Веселое племя электронов Через несколько дней, заканчивая обед, мистер Томпкинс вспомнил, что вечером должна состояться лекция профессора о строении атома, которую он обещал посетить. Но маловразумительными объяснениями своего тестя мистер Томпкинс был сыт по


Генерация от ускоренных электронов

Из книги автора

Генерация от ускоренных электронов В начале 1951 г. физик Ганс Мотц (1909—1987) предложил новый способ получения излучения на миллиметровых и субмиллиметровых длинах волн, который не включал явного упоминания процессов инверсии населенности или вынужденного излучения, даже