Глава VI. Атом Бора
Глава VI. Атом Бора
1. Спектры и спектральные линии
Невозможно непосредственно изучать внутреннее строение атома, этого микромира невообразимо малых размеров, характеризуемого процессами, недоступными нашему прямому восприятию. Структура атома проявляется только косвенно в явлениях макроскопического масштаба, которые как-то связаны с его внутренним строением.
К числу этих явлений относится, в частности, излучение атомов, возбуждаемых термически или посредством внешнего электрического поля. Это излучение характеризует определенные свойства атома, поскольку оно связано с процессами, протекающими внутри него. Исследование свойств этого излучения позволяет получить некоторые сведения о внутренней структуре атома. Таким образом, изучение и классификация оптических спектров излучения различных атомов приобретает большое значение.
Эта задача, однако, отнюдь не проста, поскольку оптические спектры имеют очень сложный характер и при исследовании невидимой простым глазом инфракрасной и ультрафиолетовой частей спектра необходимо пользоваться сложной специальной аппаратурой. Однако мало-помалу, в результате тщательных и кропотливых исследований ученым удалось установить некоторые общие закономерности в характере спектров и найти эмпирические законы, которым они подчиняются. Прежде всего было замечено, что спектральные линии всех элементов можно разбить на семейства или, как говорят в физике, серии, причем структуры соответствующих серий, относящихся к различным химическим элементам, оказались очень схожи между собой. В пределах едкой серии расположение различных спектральных линий имеет вполне определенный характер и может быть описано простой математической формулой.
В частности, в 1885 г. Бальмеру удалось найти формулу, описывающую распределение спектральных линий видимого спектра атома водорода, получивших название серии Бальмера. Эта формула определяет частоту, соответствующую последовательным линиям серии Бальмера, как функцию целого числа. Исследования излучения, проведенные в невидимой части спектра, показали существование серий, расположенных в ультрафиолетовой (серия Лаймана) и инфракрасной областях (серии Пашена, Бэккета, Пфунда), и в каждой из этих серий формулы, определяющие расположение спектральных линий, совершенно аналогичны формуле, полученной для серии Бальмера.
Подобные же спектральные серии, хотя и обладающие более сложной структурой, имеются не только у водорода, но и у некоторых других элементов, у щелочных металлов. В каждой такой серии расположение линий определяется формулой, аналогичной формуле Бальмера, т е. частота, соответствующая какой-либо линии этой серии, выражается в виде разности двух слагаемых, одно из которых зависит только от номера серии и постоянно для всех линий данной серии, а второе определяется номером линии в этой серии. Такой специфический вид этой формулы и объясняет, в частности, то, что частота некоторой спектральной линии часто оказывается равной сумме частот, соответствующих каким-либо двум другим линиям спектра. Этот факт был установлен экспериментально и позволил Ритцу открыть общий закон, носящий название комбинационного принципа и ставший основой всей современной спектроскопии.
Комбинационный принцип можно сформулировать следующим образом: для каждого атома возможно найти последовательность чисел, называемых спектральными термами этого атома, таких, что частоты всех спектральных линий данного атома будут выражаться в виде разности двух каких-либо спектральных термов. Как аддитивные свойства частот, так и соотношения, определяющие расположение спектральных линий в различных сериях, легко могут быть получены из комбинационного принципа. Справедливость его можно считать неоспоримо подтвержденной многочисленными экспериментальными данными. Но обоснование его связано с разгадкой строения атома и должно объяснить, как и какими именно процессами перестройки внутренней структуры атома вызывается излучение волн с частотой, соответствующей какой-либо спектральной линии. Таким образом, перед теоретической физикой встала важная и неотложная задача теоретического обоснования комбинационного принципа Ритца.
К сожалению, классическая теоретическая физика оказалась совершенно неспособной объяснить полученные эмпирическим путем законы, которым подчиняются атомные спектры. Действительно, для объяснения спектров излучения в рамках классической электродинамики необходимо допустить внутри излучающего вещества наличие колеблющихся заряженных частиц. Например, можно предположить, что атомы вещества содержат электроны, которые в нормальном состоянии, когда нет излучения, неподвижны и находятся в равновесии, но под воздействием каких-либо внешних причин могут начать колебаться около своего положения равновесия. Однако получаемые при этом спектральные законы находятся в вопиющем противоречии с опытными данными. Именно об этом поражении классической физики писал в 1905 г. Анри Пуанкаре: «На первый взгляд изучение спектров приводит нас к мысли о гармониках, с которыми мы уже встречались в акустике. Однако имеется существенное различие: не только волновые числа не кратны одной и той же величине, но мы не находим здесь также никакой аналогии с корнями тех трансцендентных уравнений, к которым так часто приводят задачи математической физики, такие, как, например, задача о колебаниях тела определенной формы или задача о колебаниях Герца в резонаторе или, наконец, задача Фурье об охлаждении твердого тела. Эти законы проще, но они имеют совершенно иную природу… В этом не отдавали себе отчета, и я думаю, что здесь и кроется один из важнейших секретов природы».
«И я думаю, что именно здесь кроется один из важнейших секретов природы». Фраза поистине пророческая, если вспомнить, что она была написана за десять лет до появления теории Бора. И, действительно, теория Бора выяснила истинное значение спектральных законов и объяснила, как эти законы отражают квантовый характер внутриатомной структуры. Эта теория позволила заглянуть внутрь атома и показала, что как сама структура атома, так и устойчивость этой структуры неразрывно связаны с существованием квантов. Без квантов материя не могла бы существовать. В этом и заключается великий секрет, о котором говорил Пуанкаре.