Замечательное свойство квадрата

Замечательное свойство квадрата – заключать в своих границах наибольшую площадь по сравнению со всеми другими прямоугольниками того же периметра – многим неизвестно. Приведем поэтому строгое доказательство этого положения.

Обозначим периметр прямоугольной фигуры через Р. Если взять квадрат с таким периметром, то каждая сторона его должна равняться

. Докажем, что, укорачивая одну его сторону на какую-нибудь величину b при таком же удлинении смежной стороны, мы получим прямоугольник одинакового с ним периметра, но меньшей площади. Другими словами, докажем, что площадь 

квадрата больше площади

 прямоугольника:

Так как правая сторона этого неравенства равна

, то все выражение принимает вид

0 > – b 2, или b 2 > 0.

Но последнее неравенство очевидно: квадрат всякого количества, положительного или отрицательного, больше 0. Следовательно, справедливо и первоначальное неравенство, которое привело нас к этому.

Итак, квадрат имеет наибольшую площадь из всех прямоугольников с таким же периметром.

Отсюда следует, между прочим, и то, что из всех прямоугольных фигур с одинаковыми площадями квадрат имеет наименьший периметр. В этом можно убедиться следующим рассуждением. Допустим, что это неверно и что существует такой прямоугольник А, который при равной с квадратом В площади имеет периметр меньший, чем у него. Тогда, начертив квадрат С того же периметра, как у прямоугольника А, мы получим квадрат, имеющий бо́льшую площадь, чем у А, и, следовательно, большую, чем у квадрата В. Что же у нас вышло? Что квадрат С имеет периметр меньший, чем квадрат В, а площадь большую, чем он. Это очевидно невозможно: раз сторона квадрата С меньше, чем сторона квадрата В, то и площадь должна быть меньше. Значит, нельзя было допустить существование прямоугольника А, который при одинаковой площади имеет периметр меньший, чем у квадрата. Другими словами, из всех прямоугольников с одинаковой площадью наименьший периметр имеет квадрат.

Знакомство с этими свойствами квадрата помогло бы Пахому правильно рассчитать свои силы и получить прямоугольный участок наибольшей площади. Зная, что он может пройти в день без напряжения, скажем, 36 верст, он пошел бы по границе квадрата со стороной 9 верст и к вечеру был бы обладателем участка в 81 кв. версту, – на 3 кв. версты больше, чем он получил со смертельным напряжением сил. И, наоборот, если бы он наперед ограничился какой-нибудь определенной площадью прямоугольного участка, например в 36 кв. верст, то мог бы достичь результата с наименьшей затратой сил, идя по границе квадрата, сторона которого – 6 верст.