Квадратура круга

Не может быть, чтобы читатель никогда не слыхал о «квадратуре круга» – о той знаменитейшей задаче геометрии, над которой трудились математики еще 20 веков назад. Я даже уверен, что среди читателей найдутся и такие, которые сами пытались разрешить эту задачу. Еще больше, однако, наберется читателей, которые недоумевают, в чем собственно кроется трудность этой классической неразрешимой задачи. Многие, привыкшие повторять с чужого голоса, что задача о квадратуре круга неразрешима, не отдают себе ясного отчета ни в сущности самой задачи, ни в трудности ее разрешения.

В математике есть немало задач, гораздо более интересных и теоретически и практически, нежели задача о квадратуре круга. Но ни одна не приобрела такой популярности, как эта проблема, давно вошедшая в поговорку. Два тысячелетия трудились над ней и выдающиеся математики-профессионалы и несметные толпы любителей.

«Найти квадратуру круга» – значит начертить квадрат, площадь которого в точности равна площади данного круга. Практически задача эта возникает очень часто, но как раз практически она разрешима с любой точностью. Знаменитая задача древности требует, однако, чтобы чертеж был выполнен совершенно точно при помощи всего только двух родов чертежных операций: 1) проведением окружности данного радиуса вокруг данной точки; 2) проведением прямой линии через две данные точки.

Короче говоря, необходимо выполнить чертеж, пользуясь только двумя чертежными инструментами: циркулем и линейкой.

В широких кругах нематематиков распространено убеждение, что вся трудность обусловлена тем, что отношение длины окружности к ее диаметру (знаменитое число π) не может быть выражено конечным числом цифр. Это верно лишь постольку, поскольку неразрешимость задачи зависит от особенной природы числа 71. В самом деле: превращение прямоугольника в квадрат с равной площадью – задача легко и точно разрешимая. Но проблема квадратуры круга сводится ведь к построению – циркулем и линейкой – прямоугольника, равновеликого данному кругу. Из формулы площади круга, S=πr2, или (что то же самое) S=πr × r, ясно, что площадь круга равна площади такого прямоугольника, одна сторона которого равна r, а другая в  π раз больше. Значит, все дело в том, чтобы начертить отрезок, который в π раз длиннее данного. Как известно, я не равно в точности ни З1/7, ни 3,14, ни даже 3,14159. Ряд цифр, выражающих это число, уходит в бесконечность.

Указанная особенность числа π, его иррациональность (число называется иррациональным, если его нельзя точно выразить дробью вида

, где р и q – целые числа, иррациональные числа выражаются бесконечными непериодическими десятичными дробями) установлена была еще в XVIII веке математиками Ламбертом и Лежандром, которые непосредственно опирались в этом вопросе на глубокие исследования петербургского академика Эйлера (1707–1783). И все же знание иррациональности я не остановило усилий сведущих в математике «квадратуристов». Они понимали, что иррациональность π сама по себе не делает задачи безнадежной. Существуют иррациональные числа, которые геометрия умеет «строить» совершенно точно. Пусть, например, требуется начертить отрезок, который длиннее данного отрезка в 

раз. Число 

, как ил, – иррациональное. Тем не менее ничто не может быть легче, чем начертить искомый отрезок: он равен диагонали квадрата, построенного на данном отрезке.

Каждый школьник легко справляется также и с построением отрезка

 (сторона равностороннего вписанного треугольника). Не представляет особых затруднений даже построение такого весьма сложного на вид иррационального выражения

потому что оно сводится к построению правильного 64-угольника.

Как видим, иррациональный множитель, входящий в данное алгебраическое выражение, не всегда делает это выражение невозможным для построения циркулем и линейкой. Неразрешимость квадратуры круга кроется не только в том, что число π – иррациональное, а в другой особенности этого же числа. Именно, число π – не алгебраическое, т. е. оно не может быть получено в итоге решения какого бы то ни было алгебраического уравнения с рациональными коэффициентами. Такие числа называются трансцендентными.

Французский математик XVI столетия Вьета доказал, что число

Это выражение для я разрешало бы задачу о квадратуре круга, если бы число входящих в него операций было конечно (тогда приведенное выражение можно было бы геометрически построить). Но так как число извлечений квадратных корней в этом выражении бесконечно, то формула Вьета не помогает делу.

Итак, неразрешимость задачи о квадратуре круга обусловлена трансцендентностью числа π, т. е. тем, что оно не может получиться в итоге решения алгебраического уравнения с рациональными коэффициентами. Эта особенность числа π была строго доказана в 1882 г. немецким математиком Линдеманом. В сущности, названный ученый и должен считаться единственным человеком, разрешившим квадратуру круга, несмотря на то, что его решение – отрицательное: оно утверждает, что искомое построение геометрически невыполнимо. Таким образом, в 1882 г. завершаются многовековые усилия математиков в этом направлении, но, к сожалению, не прекращаются бесплодные попытки многочисленных любителей, недостаточно знакомых с историей задачи.

Так обстоит дело с задачей о квадратуре круга в теории. Что касается практики, то она вовсе не нуждается в точном разрешении этой знаменитой задачи. Убеждение многих, что положительное разрешение проблемы о квадратуре круга имело бы огромное значение для практической жизни, – глубокое заблуждение. Для потребностей обихода вполне достаточно располагать хорошими приближенными приемами решения этой задачи.

Практически поиски квадратуры круга стали бесполезны с того времени, как найдены были первые 7–8 верных цифр числа π. Для потребностей практической жизни вполне достаточно знать, что π = 3,1415926. Никакое измерение длины не может дать результата, выражающегося более чем семью значащими цифрами. Поэтому брать для π более восьми цифр – бесполезно: точность вычисления от этого не улучшается[55]. Если радиус выражен семью значащими цифрами, то длина окружности не будет содержать более семи достоверных цифр, даже если взять для я сотню цифр. То, что старинные математики затратили огромный труд для получения возможно более «длинных» выражений для π, никакого практического смысла не имеет. Да и научное значение этих трудов ничтожно.

Это – попросту дело терпения. Если у вас есть охота и достаточно досуга, вы можете отыскать хоть 1000 цифр для π , пользуясь, например, следующим бесконечным рядом, найденным Лейбницем[56]:

Но это будет никому не нужное арифметическое упражнение, нисколько не изменяющее уже полученного решения знаменитой геометрической задачи.

Упомянутый ранее французский астроном Араго писал по этому поводу следующее:

«Искатели квадратуры круга продолжают заниматься решением задачи, невозможность которого ныне положительно доказана и которое, если бы даже и могло осуществиться, не представило бы никакого практического интереса. Не стоит распространяться об этом предмете: больные разумом, стремящиеся к открытию квадратуры круга, не поддаются никаким доводам».

Араго иронически заканчивает:

«Академии всех стран, борясь против искателей квадратуры, заметили, что болезнь эта обычно усиливается к весне».