Загадочная автобиография
В бумагах одного чудака-математика найдена была его автобиография. Она начиналась следующими строками:
«Я окончил курс университета 44-х лет от роду. Спустя год, 100-летним молодым человеком, я женился на 34-летней девушке. Незначительная разница в возрасте – всего 11 лет – способствовала тому, что мы жили общими интересами и мечтами. Спустя немного лет у меня была уже и маленькая семья из 10 детей. Жалованья я получал в месяц всего 200 рублей, из которых 1/10 приходилось отдавать сестре, так что мы с детьми жили на 130 руб. в месяц» и т. д.
Чем объяснить странные противоречия в числах этого отрывка?
Решение задачи подсказывается названием этой главы: недесятичная система счисления – вот единственная причина кажущейся противоречивости приведенных чисел. Напав на эту мысль, нетрудно догадаться, в какой именно системе счисления изображены числа чудаком-математиком. Секрет выдается фразой: «спустя год (после 44 лет), 100-летним молодым человеком…» Если от прибавления одной единицы число 44 преображается в 100, то, значит, цифра 4 – наибольшая в этой системе (как 9 – в десятичной), а, следовательно, основанием системы является 5. Чудаку-математику пришла фантазия написать все числа своей биографии по пятиричной системе счисления, т. е. по такой, в которой единица высшего разряда не в 10, а в 5 раз больше единицы низшего; на первом справа месте стоят в ней простые единицы (не свыше четырех), на втором – не десятки, а пятерки; на третьем не сотни, а «двадцати-пятерки», и т. д. Поэтому число, изображенное в тексте записки «44», означает не 4 х 10 + 4, как в десятичной системе, а 4 х 5 + 4, т. е. 24.
Точно так же число «100» в автобиографии означает одну единицу третьего разряда в пятиричной системе, т. е. 25. Остальные числа записки соответственно означают:
Восстановив истинный смысл чисел записки, мы видим, что в ней никаких противоречий нет:
«Я окончил курс 24 лет от роду. Спустя год, 25-летним молодым человеком, я женился на 19-летней девушке. Незначительная разница в возрасте – всего 6 лет – способствовала тому, что мы жили общими интересами и мечтами. Спустя немного лет, у меня была уже и маленькая семья из 5 детей. Жалованья я получал 50 рублей, из которых 1/5 приходилось отдавать сестре, так что мы с детьми жили на 40 руб. в месяц».
Трудно ли изображать числа в других системах счисления? Нисколько. Положим, вы желаете число 119 изобразить в пятиричной системе. Делите 119 на 5, чтобы узнать, сколько в нем единиц первого разряда:
119: 5 = 23, остаток 4.
Значит, число простых единиц будет 4. Далее, 23 пятерки не могут стоять все во втором разряде, так как высшая цифра в пятиричной системе – 4, и больше 4 единиц ни в одном разряде быть не должно. Делим поэтому 23 на 5:
23: 5 = 4, остаток 3.
Это показывает, что во втором разряде («пятерок») будет цифра 3, а в третьем («двадцатипятерок») – 4. Итак, 119 = 4x25 + 3x5 + 4, или в пятиричной системе – «434».