Завтрак с головоломками

1. Белка на поляне

– Сегодня утром я с белкой в прятки играл, – рассказывал во время завтрака один из собравшихся за столом дома отдыха. – Вы знаете в нашем лесу круглую полянку с одинокой березой посредине? За этим деревом и пряталась от меня белка. Выйдя из чащи на полянку, я сразу заметил беличью мордочку с живыми глазками, уставившуюся на меня из-за ствола. Осторожно, не приближаясь, стал я обходить по краю полянки, чтобы взглянуть на зверька. Раза четыре обошел я дерево – но плутовка отступала по стволу в обратную сторону, по-прежнему показывая только мордочку. Так и не удалось мне обойти вокруг белки.

– Однако, – возразил кто-то, – сами же вы говорите, что четыре раза обошли вокруг дерева.

– Вокруг дерева, но не вокруг белки!

– Но белка-то на дереве?

– Что же из того?

– То, что вы кружились и вокруг белки.

– Хорошо кружился, если ни разу не видел ее спинки.

– При чем тут спинка? Белка в центре, вы ходите по кругу, значит, ходите вокруг белки.

– Ничуть не значит. Вообразите, что я хожу около вас по кругу, а вы поворачиваетесь ко мне все время лицом, пряча спину. Скажете вы разве, что я кружусь вокруг вас?

– Конечно, скажу. Как же иначе?

– Кружусь, хотя не бываю позади вас, не вижу вашей спины?

– Далась вам спина! Вы замыкаете вокруг меня путь – вот в чем суть дела, а не в том, чтобы видеть спину.

– Позвольте: что значит кружиться вокруг чего-нибудь? По-моему, это означает только одно: становиться последовательно в такие места, чтобы видеть предмет со всех сторон. Ведь правильно, профессор? – обратился спорящий к сидевшему за столом старику.

– Спор идет у вас в сущности о словах, – ответил ученый. – А в таких случаях надо начинать всегда с того, о чем вы сейчас только завели речь: надо договориться о значении слов. Как понимать слова: «двигаться вокруг предмета»? Смысл их может быть двоякий. Можно, во-первых, разуметь под ними перемещение по замкнутой линии, внутри которой находится предмет. Это одно понимание. Другое: двигаться по отношению к предмету так, чтобы видеть его со всех сторон. Держась первого понимания, вы должны признать, что четыре раза обошли вокруг белки. Придерживаясь же второго, – обязаны заключить, что не обошли вокруг нее ни разу. Поводов для спора здесь, как видите, нет, если обе стороны говорят на одном языке, понимают слова одинаково.

– Прекрасно, можно допустить двоякое понимание. Но какое все же правильнее?

– Так ставить вопрос не приходится. Уславливаться можно о чем угодно. Уместно только спросить, что более согласно с общепринятым пониманием. Я сказал бы, что лучше вяжется с духом языка первое понимание и вот почему. Солнце, как известно, делает полный оборот вокруг своей оси немного более, чем за 25 суток.

– Солнце вертится?

– Конечно, как и Земля вокруг оси. Вообразите, однако, что вращение Солнца совершается медленнее, а именно, что оно делает один оборот не в 25 суток, а в 3651/4 суток, т. е. в год. Тогда Солнце было бы обращено к Земле всегда одной и той же своей стороной; противоположной половины, «спины» Солнца, мы никогда не видели бы. Но разве стал бы кто-нибудь утверждать из-за этого, что Земля не кружится вокруг Солнца?

– Да, теперь ясно, что я все-таки кружился вокруг белки.

– Есть предложение, товарищи! Не расходиться, – сказал один из слушавших спор. – Так как в дождь гулять никто не пойдет, а перестанет дождик, видно, не скоро, то давайте проведем здесь время за головоломками. Начало сделано. Пусть каждый по очереди придумает или припомнит какую-нибудь головоломку. Вы же, профессор, явитесь нашим верховным судьей.

– Если головоломки будут с алгеброй или с геометрией, то я должна отказаться, – заявила молодая женщина.

– И я тоже, – присоединился кто-то.

– Нет, нет, участвовать должны все! А мы попросим присутствующих не привлекать ни алгебры, ни геометрии, разве только самые начатки. Возражений не имеется?

– Тогда я согласна и готова первая предложить головоломку.

– Прекрасно, просим! – донеслось с разных сторон. – Начинайте.

2. В коммунальной кухне

– Головоломка моя зародилась в обстановке дачной квартиры. Задача, так сказать, бытовая. Жилица – назову ее для удобства Тройкиной – положила в общую плиту 3 полена своих дров, жилица Пятеркина – 5 полей, жилец Бестопливный, у которого, как вы догадываетесь, не было своих дров, получил от обеих гражданок разрешение сварить обед на общем огне. В возмещение расходов он уплатил соседкам 8 копеек. Как должны они поделить между собой эту плату?

– Пополам, – поспешил заявить кто-то. Бестопливный пользовался их огнем в равной мере.

– Ну, нет, – возразил другой, – надо принять в соображение, как участвовали в этом огне дровяные вложения гражданок. Кто дал 3 полена, должен получить 3 копейки; кто дал 5 полен – получает 5 копеек. Вот это будет справедливый дележ.

– Товарищи, – взял слово тот, кто затеял игру и считался теперь председателем собрания. – Окончательные решения головоломок давайте пока не объявлять. Пусть каждый еще подумает над ними. Правильные ответы судья огласит нам за ужином. Теперь следующий. Очередь за вами, товарищ пионер!

3. Работа школьных кружков

– В нашей школе, – начал пионер, – имеется 5 кружков: слесарный, столярный, фотографический, шахматный и хоровой. Слесарный кружок занимается через день, столярный – через 2 дня на 3-й, фотографический – каждый 4-й день, шахматный – каждый 5-й день и хоровой – каждый 6-й день. Первого января собрались в школе все 5 кружков, а затем занятия велись в назначенные по плану дни, без отступлений от расписания. Вопрос состоит в том, сколько в первом квартале было еще вечеров, когда собирались в школе все 5 кружков.

– А год был простой или високосный? – осведомились у пионера.

– Простой.

– Значит, первый квартал – январь, февраль, март – надо считать за 90 дней?

– Очевидно.

– Позвольте к вопросу вашей головоломки присоединить еще один, – сказал профессор. – А именно: сколько в том же квартале года было таких вечеров, когда кружковых занятий в школе вовсе не происходило?

– Ага, понимаю! – раздался возглас. – Задача с подвохом. Ни одного дня не будет больше с 5 кружками и ни одного дня без всяких кружков. Это уж ясно!

– Почему? – спросил председатель.

– Объяснить не могу, но чувствую, что отгадчика хотят поймать впросак.

– Ну, это не довод. Вечером выяснится, правильно ли ваше предчувствие. За вами очередь, товарищ!

4. Кто больше?

– Двое считали в течение часа всех, кто проходил мимо них на тротуаре. Один стоял у ворот дома, другой прохаживался взад и вперед по тротуару. Кто насчитал больше прохожих?

– Идя, больше насчитаешь, ясное дело, – донеслось с другого конца стола.

– Ответ узнаем за ужином, – объявил председатель. – Следующий!

5. Дед и внук

– То, о чем я скажу, происходило в 1932 г. Мне было тогда ровно столько лет, сколько выражают последние две цифры года моего рождения. Когда я об этом соотношении рассказал деду, он удивил меня заявлением, что с его возрастом выходит то же самое. Мне это показалось невозможным…

– Разумеется, невозможно, – вставил чей-то голос.

– Представьте, что вполне возможно. Дед доказал мне это. Сколько же лет было каждому из нас?

6. Железнодорожные билеты

– Я – железнодорожная кассирша, продаю билеты, – начала следующая участница игры. – Многим это кажется очень простым делом. Не подозревают, с каким большим числом билетов приходится иметь дело кассиру даже маленькой станции. Ведь необходимо, чтобы пассажиры могли получить билеты от данной станции до любой другой на той же дороге, притом в обоих направлениях. Я служу на дороге с 25 станциями. Сколько же, по-вашему, различных образцов билетов заготовлено железной дорогой для всех ее касс?

– Ваша очередь, товарищ летчик, – провозгласил председатель.

7. Полет дирижабля

– Из Ленинграда вылетел прямо на север дирижабль. Пролетев в северном направлении 500 км, он повернул на восток. Пролетев в эту сторону 500 км, дирижабль сделал новый поворот – на юг и прошел в южном направлении 500 км. Затем он повернул на запад и, пролетев 500 км, опустился. Спрашивается: где расположено место спуска дирижабля относительно Ленинграда – к западу, к востоку, к северу или к югу?

– На простака рассчитываете, – сказал кто-то, – 500 шагов вперед, 500 вправо, 500 назад да 500 влево – куда придем? Откуда вышли, туда и придем!

– Итак, где, по-вашему, спустился дирижабль?

– На том же ленинградском аэродроме, откуда поднялся. Не так разве?

– Именно не так.

– В таком случае я ничего не понимаю!

– В самом деле, здесь что-то неладно, – вступил в разговор сосед. – Разве дирижабль спустился не в Ленинграде?.. Нельзя ли повторить задачу?

Летчик охотно исполнил просьбу. Его внимательно выслушали и с недоумением переглянулись.

– Ладно, – объявил председатель. – До ужина успеем подумать об этой задаче, а сейчас будем продолжать.

8. Тень

– Позвольте мне, – сказал очередной загадчик, – взять сюжетом головоломки тот же дирижабль. Что шире: дирижабль или его полная тень?

– В этом и вся головоломка?

– Вся.

Тень, конечно, шире дирижабля: ведь лучи солнца расходятся веером, – последовало сразу решение.

– Я бы сказал, – возразил кто-то, – что, напротив, лучи солнца параллельны; тень и дирижабль одной ширины.

– Что вы? Разве не случалось вам видеть расходящиеся лучи от спрятанного за облаком солнца? Тогда можно воочию убедиться, как сильно расходятся солнечные лучи. Тень дирижабля должна быть значительно больше дирижабля, как тень облака больше самого облака.

– Почему же обычно принимают, что лучи солнца параллельны? Моряки, астрономы – все так считают…

Председатель не дал спору разгореться и предоставил слово следующему загадчику.

9. Задача со спичками

Очередной оратор высыпал на стол все спички из коробка и стал распределять их в три кучки.

– Костер собираетесь раскладывать? – шутили слушатели.

– Головоломка, – объяснил загадчик, – будет со спичками. Вот их три неравные кучки. Во всех вместе 48 штук. Сколько в каждой, я вам не сообщаю. Зато отметьте следующее: если из первой кучи я переложу во вторую столько спичек, сколько в этой второй куче имелось, затем из второй в третью переложу столько, сколько в этой третьей перед тем будет находиться, и, наконец, из третьей переложу в первую столько спичек, сколько в этой первой куче будет тогда иметься, – если, говорю, все это проделать, то число спичек во всех кучках станет одинаково. Сколько же было в каждой кучке первоначально?

10. Коварный пень

– Головоломка эта, – начал сосед последнего загадчика, – напоминает задачу, которую давно как-то задал мне деревенский математик. Это был целый рассказ, довольно забавный. Повстречал крестьянин в лесу незнакомого старика. Разговорились. Старик внимательно оглядел крестьянина и сказал:

– Известен мне в леску этом пенечек один удивительный. Очень в нужде помогает.

– Как помогает? Вылечивает?

– Лечить не лечит, а деньги удваивает. Положишь под него кошель с деньгами, досчитаешь до ста – и готово: деньги, какие были в кошельке, удвоились. Такое свойство имеет. Замечательный пень!

– Вот бы мне испробовать, – мечтательно сказал крестьянин.

– Это можно. Отчего же? Заплатить только надо.

– Кому платить? И много ли?

– Тому платить, кто дорогу укажет. Мне, значит. А много ли, о том особый разговор.

Стали торговаться. Узнав, что у крестьянина в кошельке денег мало, старик согласился получать после каждого удвоения по 1 р. 20 к. На том и порешили.

Старик повел крестьянина в глубь леса, долго бродил с ним и, наконец, разыскал в кустах старый, покрытый мохом еловый пень. Взяв из рук крестьянина кошелек, он засунул его между корнями пня. Досчитали до ста. Старик снова стал шарить и возиться у основания пня, наконец извлек оттуда кошелек и подал крестьянину.

Заглянул крестьянин в кошелек и что же? – деньги в самом деле удвоились! Отсчитал из них старику обещанные 1 p. 20 к. и попросил засунуть кошелек вторично под чудодейственный пень.

Снова досчитали до ста, снова старик стал возиться в кустах у пня, и снова совершилось диво: деньги в кошельке удвоились. Старик вторично получил из кошелька обусловленные 1 р. 20 к.

В третий раз спрятали кошель под пень. Деньги удвоились и на этот раз. Но когда крестьянин уплатил старику обещанное вознаграждение, в кошельке не осталось больше ни одной копейки. Бедняга потерял на этой комбинации все свои деньги. Удваивать дальше было уже нечего, и крестьянин уныло побрел из лесу.

Секрет волшебного удвоения денег вам, конечно, ясен: старик недаром, отыскивая кошелек, мешкал в зарослях у пня. Но можете ли вы ответить на другой вопрос: сколько было у крестьянина денег до злополучных опытов с коварным пнем?

11. Задача о декабре

– Я, товарищи, языковед, от всякой математики далек, – начал пожилой человек, которому пришел черед задавать головоломку. – Не ждите от меня поэтому математической задачи. Могу только предложить вопрос из знакомой мне области. Разрешите задать календарную головоломку?

– Просим!

– Двенадцатый месяц называется у нас «декабрь». А вы знаете, что, собственно, значит «декабрь»? Слово это происходит от греческого слова «дека» – десять, отсюда также слово «декалитр» – десять литров, «декада» – десять дней и др. Выходит, что месяц декабрь носит название «десятый». Чем объяснить такое несоответствие?

– Ну теперь осталась только одна головоломка, – произнес председатель.

12. Арифметический фокус

– Мне приходится выступать последним, двенадцатым. Для разнообразия покажу вам арифметический фокус и попрошу раскрыть его секрет. Пусть кто-нибудь из вас, хотя бы вы, товарищ председатель, напишет на бумажке, тайно от меня, любое трехзначное число.

– Могут быть и нули в этом числе?

– Не ставлю никаких ограничений. Любое трехзначное число, какое пожелаете.

– Написал. Что теперь?

– Припишите к нему это же число еще раз. У вас получится, конечно, шестизначное число.

– Есть. Шестизначное число.

– Передайте бумажку соседу, что сидит подальше от меня. А он пусть разделит это шестизначное число на семь.

– Легко сказать: разделить на семь! Может и не разделится.

– Не беспокойтесь, поделится без остатка.

– Числа не знаете, а уверены, что поделится.

– Сначала разделите, потом будем говорить.

– На ваше счастье разделилось.

– Результат вручите своему соседу, не сообщая мне. Он разделит его на 11.

– Думаете, опять повезет – разделится?

– Делите, остатка не получится.

– В самом деле без остатка! Теперь что?

– Передайте результат дальше. Разделим его… ну, скажем, на 13.

– Нехорошо выбрали. Без остатка на 13 мало чисел делится… Ан нет, разделилось нацело. Везет же вам!

– Дайте мне бумажку с результатом; только сложите ее, чтобы я не видел числа.

Не развертывая листа бумаги, «фокусник» вручил его председателю.

– Извольте получить задуманное вами число. Правильно?

– Совершенно верно! – с удивлением ответил тот, взглянув на бумажку. – Именно это я и задумал… теперь, так как список ораторов исчерпан, позвольте закрыть наше собрание, благо и дождь успел пройти. Разгадки всех головоломок будут оглашены сегодня же, после ужина. Записки с решениями можете подавать мне.

Решения головоломок 1-12

1. Головоломка с белкой на поляне рассмотрена была полностью раньше. Переходим к следующей.

2. Нельзя считать, как многие делают, что 8 копеек уплачено за 8 полен, по 1 копейке за полено. Деньги эти уплачены только за третью часть от 8 полен, потому что огнем пользовались трое в одинаковой мере. Отсюда следует, что все 8 полен оценены были в 8 х 3, т. е. в 24 к., и цена одного полена – 3 копейки.

Теперь легко сообразить, сколько причитается каждому. Пятеркиной за ее 5 полен следует 15 копеек; но она сама воспользовалась плитой на 8 копеек; значит, ей остается дополучить еще 15 – 8, т. е. 7 копеек. Тройкина за три свои полена должна получить 9 копеек, а если вычесть 8 копеек, причитающихся с нее за пользование плитой, то следовать ей будет всего только 9–8, т. е. 1 копейка.

Итак, при правильном дележе Пятеркина должна получить 7 копеек, Тройкина – 1 копейку.

3. На первый вопрос – через сколько дней в школе соберутся одновременно все 5 кружков – мы легко ответим, если сумеем разыскать наименьшее из всех чисел, которое делится без остатка на 2, на 3, на 4, на 5 и на 6. Нетрудно сообразить, что число это 60. Значит, на 61-й день соберется снова 5 кружков: слесарный – через 30 двухдневных промежутков, столярный – через 20 трехдневных, фотокружок – через 15 четырехдневных, шахматный – через 12 пятидневок и хоровой – через 10 шестидневок. Раньше чем через 60 дней такого вечера не будет. Следующий подобный же вечер будет еще через 60 дней, т. е. уже во втором квартале.

Итак, в течение первого квартала окажется только один вечер, когда в клубе снова соберутся для занятий все 5 кружков.

Хлопотливее найти ответ на второй вопрос задачи: сколько будет вечеров, свободных от кружковых занятий? Чтобы разыскать такие дни, надо выписать по порядку все числа от 1 до 90 и зачеркнуть в этом ряду дни работы слесарного кружка, т. е. числа 1, 3, 5, 7, 9 и т. д. Потом зачеркнуть дни работы столярного кружка: 4-й, 7-й, 10-й и т. д. После того как зачеркнем затем дни занятий фотокружка, шахматного и хорового, у нас останутся незачеркнутыми те дни первого квартала, когда ни один кружок не работал.

Кто проделает эту работу, тот убедится, что вечеров, свободных от занятий, в течение первого квартала будет довольно много: 24. В январе их 8, а именно: 2-го, 8-го, 12-го, 14-го, 18-го, 20-го, 24-го и 30-го. В феврале насчитывается 7 таких дней, в марте – 9.

4. Оба насчитали одинаковое число прохожих. Хотя тот, кто стоял у ворот, считал проходивших в обе стороны, зато тот, кто ходил, видел вдвое больше встречных людей. Можно рассуждать и иначе. Когда тот из считавших, который прохаживался по тротуару, первый раз возвратился к своему стоявшему товарищу, они насчитали одинаковое число прохожих – всякий, прошедший мимо стоявшего, попался (на том или на обратном пути) и прохаживавшемуся (и наоборот). И каждый раз, возвращаясь к своему стоявшему товарищу, гулявший насчитывал такое же число прохожих. То же было и в конце часа, когда они последний раз встретились и сообщили друг другу результаты подсчетов.

5. С первого взгляда может действительно показаться, что задача неправильно составлена: выходит как будто, что внук и дед одного возраста. Однако требование задачи, как сейчас увидим, легко удовлетворяется.

Внук, очевидно, родился в XX столетии. Первые две цифры года его рождения, следовательно, 19; таково число сотен. Число, выражаемое остальными цифрами, будучи сложено с самим собою, должно составить 32. Значит, это число 16: год рождения внука 1916, и ему в 1932 г. было 16 лет.

Дед его родился, конечно, в XIX столетии: первые две цифры года его рождения 18. Удвоенное число, выражаемое остальными цифрами, должно составить 132. Значит, само это число равно половине 132, т. е. 66. Дед родился в 1866 г. и ему в 1932 году было 66 лет.

Таким образом, и внуку и деду в 1932 г. было столько лет, сколько выражают последние две цифры годов их рождения.

6. На каждой из 25 станций пассажиры могут требовать билет до любой станции, т. е. на 24 пункта. Значит, разных билетов надо напечатать 25 х 24 = 600 образцов. Если же пассажиры могут приобретать не только прямые билеты («туда»), но, при желании, и обратные («туда-обратно»), то число образцов билетов возрастет еще вдвое, т. е. их потребуется 1200.

7. Задача эта никакого противоречия не содержит. Не следует думать, что дирижабль летел по контуру квадрата; надо принять в расчет шарообразную форму Земли. Дело в том, что меридианы к северу сближаются; поэтому, пройдя 500 км по параллельному кругу, расположенному на 500 км севернее широты Ленинграда, дирижабль отошел к востоку на большее число градусов, чем пролетел потом в обратном направлении, очутившись снова на широте Ленинграда. В результате дирижабль, закончив полет, оказался восточнее Ленинграда.

Рис. 1

На сколько именно? Это можно рассчитать. На рис. 1 вы видите маршрут дирижабля: ABCDE. Точка N — Северный полюс; в этой точке сходятся меридианы АВ и DC. Дирижабль пролетел сначала 500 км на север, т. е. по меридиану AN. Так как длина градуса меридиана 111 км, то дуга меридиана в 500 км содержит 500: 111 «4,5°. Ленинград лежит на 60-й параллели; значит, точка В находится на широте 60°+4,5° = 64,5°. Затем дирижабль летел к востоку, т. е. по параллели ВС, и прошел по ней 500 км. Длину одного градуса на этой параллели можно вычислить (или узнать из таблиц); она равна примерно 48 км. Отсюда легко определить, сколько градусов пролетел дирижабль на восток: 500: 48 «10,4°. Далее дирижабль летел в южном направлении, т. е. по меридиану CD и, пройдя 500 км, должен был очутиться снова на параллели Ленинграда. Теперь путь лежит на запад, т. е. по AD; 500 км этого пути явно короче расстояния AD. В расстоянии AD заключается столько же градусов, сколько и в ВС, т. е. 10,4°. Но длина 1° на ширине 60° примерно равна 55,5 км. Следовательно, между А и D расстояние равно 55,5 х 10,4 «577 км. Мы видим, что дирижабль не мог спуститься в Ленинграде; он не долетел до него 77 км, т. е. оказался над Ладожским озером и мог опуститься только на воду.

8. Беседовавшие об этой задаче допустили ряд ошибок. Неверно, что лучи солнца, падающие на земной шар, заметно расходятся. Земля так мала по сравнению с расстоянием ее от Солнца, что солнечные лучи, падающие на какую-либо часть ее поверхности, расходятся на неуловимо малый угол: практически лучи эти можно считать параллельными. То, что мы видим иногда (при так называемом «иззаоблачном сиянии») лучи солнца, расходящиеся веером, – не более как следствие перспективы.

В перспективе параллельные линии представляются сходящимися; вспомните вид уходящих вдаль рельсов или вид длинной аллеи.

Однако, из того, что лучи солнца падают на землю параллельным пучком, вовсе не следует, что полная тень дирижабля равна по ширине самому дирижаблю. Взглянув на рис. 2, вы поймете, что полная тень дирижабля в пространстве суживается по направлению к земле и что, следовательно, тень, отбрасываемая им на земную поверхность, должна быть уже самого дирижабля! CD меньше чем АВ.

Рис. 2. Как падает тень дирижабля

Если знать высоту дирижабля, то можно вычислить и то, как велика эта разница. Пусть дирижабль летит на высоте 100 м над земной поверхностью. Угол, составляемый прямыми АС в BD между собою, равен тому углу, под которым усматривается солнце с земли; угол этот известен; около 1/2°. С другой стороны, известно, что всякий предмет, видимый под углом в 1/2°, удален от глаза на 115 своих поперечников. Значит, избыток длины дирижабля над длиною тени (этот избыток усматривается с земной поверхности под углом в 1/2°) должен составлять 115-ю долю от АС. Величина АС больше отвесного расстояния от А до земной поверхности. Если угол между направлением солнечных лучей и земной поверхностью равен 45°, то АС (при высоте дирижабля 100 м) составляет около 140 м, и, следовательно, отрезок MN равен 

м.

Все сказанное относится к полной тени дирижабля – черной и резкой, и не имеет отношения к так называемой полутени, слабой и размытой. Расчет наш показывает, между прочим, что, будь на месте дирижабля небольшой шар-зонд диаметром меньше 12 м, он не отбрасывал бы вовсе полной тени; видна была бы только его смутная полутень.

9. Задачу решают с конца. Будем исходить из того, что после всех перекладываний число спичек в кучках сделалось одинаковым. Так как от этих перекладываний общее число спичек не изменилось, осталось прежнее (48), то в каждой кучке к концу всех перекладываний оказалось 16 штук.

Итак, имеем в самом конце:

Непосредственно перед этим в 1-ю кучку было прибавлено столько спичек, сколько в ней имелось; иначе говоря, число спичек в ней было удвоено. Значит, до последнего перекладывания в 1-й кучке было не 16, а только 8 спичек. В кучке же 3-й, из которой 8 спичек было взято, имелось перед тем 16 + 8 = 24 спички.

Теперь у нас такое распределение спичек по кучкам:

Далее: мы знаем, что перед этим из 2-й кучки было переложено в 3-ю столько спичек, сколько имелось в 3-й кучке. Значит, 24 – это удвоенное число спичек, бывших в 3-й кучке до этого перекладывания. Отсюда узнаем распределение спичек после первого перекладывания:

Легко сообразить, что раньше первого перекладывания (т. е. до того как из 1-й кучки переложено было во 2-ю столько спичек, сколько в этой 2-й имелось) распределение спичек было таково:

Таково первоначальное количество спичек в кучках.

10. Эту головоломку также проще решить с конца. Мы знаем, что после третьего удвоения в кошельке оказалось 1 р. 20 к. (деньги эти получил старик в последний раз). Сколько же было до этого удвоения? Конечно, 60 к. Остались эти 60 к. после уплаты старику вторых 1 р. 20 к., а до уплаты было в кошельке 1 р. 20 к. + 60 к. = 1 р. 80 к.

Далее: 1 р. 80 к. оказались в кошельке после второго удвоения; до того было всего 90 к., оставшихся после уплаты старику первых 1 р. 20 к. Отсюда узнаем, что до уплаты находилось в кошельке 90 к. + 1 р. 20 к. = = 2 р. 10 к. Столько денег имелось в кошельке после первого удвоения; раньше же было вдвое меньше – 1 р. 05 к. Это и есть те деньги, с которыми крестьянин приступил к своим неудачным финансовым операциям.

Проверим ответ.

Деньги в кошельке:

После 1-го удвоения……….1 р. 5 к. х 2 = 2 р. 10 к.

«1-й уплаты………….2 р. 10 к. – 1 р. 20 к. = 90 к.

«2-го удвоения………….90 к. х 2 = 1 р. 80 к.

«2-й уплаты……….. 1 р. 80 к. – 1 р. 20 к. = 60 к.

«3-го удвоения…………60 к. х 2 = 1 р. 20 к.

«3-й уплаты…………1 р. 20 к. – 1 р. 20 к. = 0.

11. Наш календарь ведет свое начало от календаря древних римлян. Римляне же (до Юлия Цезаря) считали началом года не 1 января, а 1 марта. Декабрь тогда был, следовательно, десятый месяц. С перенесением начала года на 1 января названия месяцев изменены не были. Отсюда и произошло то несоответствие между названием и порядковым номером, которое существует теперь для ряда месяцев.

12. Проследим за тем, что проделано было с задуманным числом. Прежде всего к нему приписали взятое трехзначное число еще раз. Это то же самое, что приписать три нуля и прибавить затем первоначальное число; например:

872 872 = 872 000 + 872.

Теперь ясно, что́, собственно, проделано было с числом: его увеличили в 1000 раз и, кроме того, прибавили его самого; короче сказать – умножили число на 1001.

Что же сделано было потом с этим произведением? Его разделили последовательно на 7, на 11 и на 13. В конечном итоге, значит, разделили его на 7 х 11 х 13, т. е. на 1001.

Итак, задуманное число сначала умножили на 1001, потом разделили на 1001. Надо ли удивляться, что в результате получилось то же самое число?

Прежде чем закончить главу о головоломках в доме отдыха, расскажу еще об арифметических фокусах, которыми вы можете занять досуг ваших товарищей…