Сверхисполин и сверхлилипут

Наши беседы о великанах и карликах из мира чисел были бы неполны, если бы мы не рассказали читателю об одной изумительной диковинке этого рода – диковинке, правда, не новой, но стоящей дюжины новинок. Чтобы подойти к ней, начнем со следующей, на вид весьма незамысловатой задачи:

Какое самое большое число можно написать тремя цифрами, не употребляя никаких знаков действия?

Хочется ответить: 999, – но, вероятно, вы уже подозреваете, что ответ другой, иначе задача была бы чересчур проста. И действительно, правильный ответ пишется так:

Выражение это означает: «девять в степени девять в девятой степени» (на языке математики такое выражение называется «третьей сверхстепенью девяти»). Другими словами: нужно составить произведение из стольких девяток, сколько единиц в результате умножения:

9 × 9 × 9 × 9 × 9 × 9 × 9 × 9 × 9.

Достаточно только начать вычисление, чтобы ощутить огромность предстоящего результата. Если у вас хватит терпения выполнить перемножение девяти девяток, вы получите число:

387 420 489.

Главная работа только начинается: теперь нужно найти

9387420489

то есть произведение 387 420 489 девяток. Придется сделать круглым счетом 400 миллионов умножений…

У вас, конечно, не будет времени довести до конца подобное вычисление. Но я лишен возможности сообщить вам готовый результат – по трем причинам, которые нельзя не признать уважительными. Во-первых, число это никогда и никем еще не было вычислено (известен только приближенный результат). Во-вторых, если бы даже оно и было вычислено, то, чтобы напечатать его, понадобилось бы не менее тысячи таких книг, как эта, потому что число наше состоит из 369 693 061 цифры; набранное обыкновенным шрифтом, оно имело бы в длину 1000 км – от Ленинграда до Горького. Наконец, если бы меня снабдили достаточным количеством бумаги и чернил, я и тогда не мог бы удовлетворить вашего любопытства. Вы легко можете сообразить почему: если я способен писать, скажем, без перерыва по две цифры в секунду, то в час я напишу 7200 цифр, а в сутки, работая непрерывно день и ночь, – не более 172 800 цифр. Отсюда следует, что, не отрываясь ни на секунду от пера, трудясь круглые сутки изо дня в день без отдыха, я просидел бы за работой не менее 7 лет, прежде чем написал бы это число…

Могу сообщить вам, что это число начинается цифрами 428 124773 175 747 048 036 987 118 и кончается 89. Что находится между этим началом и концом – неизвестно. А ведь там 369 693 061 цифра!..

Вы видите, что уже число цифр нашего результата невообразимо огромно. Как же велико само число, выражаемое этим длиннейшим рядом цифр? Трудно дать хотя бы приблизительное представление о его громадности, потому что такого множества вещей, считая даже каждый электрон за отдельную вещь, нет в целой Вселенной!

Архимед вычислил некогда, сколько песчинок заключал бы в себе мир, если бы весь он, до неподвижных звезд, наполнен был тончайшим песком. У него получился результат, не превышающий единицы с 63 нолями. Наше число состоит не из 64, а почти из 370 миллионов цифр – следовательно, оно неизмеримо превышает огромное число Архимеда.

Поступим же по примеру Архимеда, но вместо «исчисления песчинок» произведем «исчисление электронов». Вы уже знаете, что электрон меньше песчинки примерно во столько же раз, во сколько раз песчинка меньше земного шара. Для радиуса видимой Вселенной примем расстояние в миллиард световых лет. Так как свет пробегает в секунду 300 000 км, а в году 31 миллион секунд, то можно считать, что световой год равен круглым счетом 10 биллионам километров (гнаться за большей точностью здесь бесполезно). Значит, для радиуса всей известной нам Вселенной получаем величину 10 миллиардов биллионов километров, или, прибегая к способу изображения числовых великанов, объясненному раньше, 1022 км.

Объем шара такого радиуса можно вычислить по правилам геометрии: он равен (с округлением) 44 · 1066 куб. км. Умножив это число на число кубических сантиметров в кубическом километре (1015), получим для объема видимой Вселенной величину 1081 куб. см (небезынтересно отметить, что Архимед в своем исчислении песчинок определял объем Вселенной в 5 · 1054 куб. см).

Теперь представим себе, что весь этот объем сплошь заполнен самыми тяжелыми из известных нам атомов – атомами элемента урана, которых идет на грамм около 1022 штук. Их поместилось бы в шаре указанного объема 10103 штуки. Дознано, что в каждом атоме урана содержится 238 электронов (внешних и внутренних). Поэтому во всей доступной нашему исследованию Вселенной могло бы поместиться не более 10106 электронов.

Число, состоящее «всего лишь» из 107 цифр… Как это мизерно по сравнению с нашим числовым великаном почти из 370 миллионов цифр!

Вы видите, что, наполняя сплошь видимую Вселенную электронами, мы не исчерпали и небольшой доли того исполинского числа, которое скромно скрывается под изображением:

Познакомившись с этим замаскированным гигантом, обратимся к его противоположности.

Соответствующий числовой лилипут получится, если разделим единицу на это число. Будем иметь:

что равно:

Мы имеем здесь знакомое нам огромное число в знаменателе. Сверхвеликан превратился в сверхлилипута.

Необходимо сделать существенное замечание о великане из трех девяток. Я получил немало писем от читателей с утверждением, что выражение это вовсе не так трудно вычислить; ряд читателей даже выполнили требуемый расчет, употребив на него сравнительно немного времени. Результат оказался несравненно скромнее того, о котором у меня рассказано. В самом деле, пишут они,

99= 387 420 489;

возвысив же 387 420 489 в 9-ю степень, получаем число «всего лишь» из 72 цифр. Это хотя и не мало, но до 370 миллионов цифр от него еще очень далеко…

Читатели недоумевают, а между тем ошибка их в том, что ими неправильно понят смысл трехъярусного выражения из девяток. Они понимают его так:

в то время как правильное его понимание иное:

Отсюда огромная разница в итогах вычисления.

Оба способа понимания приводят к одинаковому результату только в одном случае: когда мы имеем выражение

Тут безразлично, как вести вычисление: в обоих случаях получается один результат – 16.

Любопытно, что сейчас приведенное выражение вовсе не означает самого большого числа, какое можно изобразить тремя двойками. Можно получить гораздо большее число, если расположить двойки так:

22.

Это выражение равно 4 194 304, то есть значительно больше 16. Как видите, третья сверхстепень не во всех случаях выражает наибольшее число, какое можно изобразить тремя одинаковыми цифрами.