Число 10101
После сказанного о числе 1001 для вас уже не будет неожиданностью увидеть в витринах нашей галереи число 10101. Вы догадаетесь, какому именно свойству число это обязано такою честью. Оно, как и число 1001, дает удивительный результат при умножении, но не трехзначных, а двузначных чисел: каждое двузначное число, умноженное на 10101, дает в результате само себя, написанное трижды. Например:
73 х 10101 = 737373;
21 х 10101 = 212121.
Причина уясняется из следующей строки:
Можно ли проделывать с помощью этого числа фокусы необычайного отгадывания, как с помощью числа 1001?
Да, можно. Здесь возможно даже обставить фокус разнообразнее, если иметь в виду, что 10101 есть произведение четырех простых чисел:
10101 = 3 х 7 х 13 x 37.
Предложив товарищу задумать какое-нибудь двузначное число, вы предлагаете второму приписать к нему то же число, а третьему – приписать то же число еще раз. Четвертого вы просите разделить получившееся шестизначное число, например, на 7; пятый товарищ должен разделить полученное частное на 3; шестой делит то, что получилось, на 37, и, наконец, седьмой делит этот результат на 13, причем все четыре деления выполняются без остатка. Результат последнего деления вы просите передать первому товарищу: это – задуманное им число.
При повторении фокуса вы можете внести в него некоторое разнообразие, обращаясь каждый раз к новым делителям. А именно вместо множителей
3 х 7 х 13 х 37 можете взять следующие группы множителей:
21 х 13 х 37; 7 х 39 х 37; 3 х 91 х 37; 7 х 13 х 111.
Число это – 10101, – пожалуй, даже удивительнее волшебного числа Шехеразады, хотя и менее его известно своими поразительными свойствами. О нем писалось, впрочем, еще двести лет тому назад в «Арифметике» Магницкого, в главе, где приводятся примеры умножения «с некоим удивлением». С тем большим основанием должны мы включить его в наше собрание арифметических диковинок.