Частица с хорошо определённым импульсом размазана по всему пространству

We use cookies. Read the Privacy and Cookie Policy

Важная особенность волновой функции, показанной на рис. 6.1, состоит в том, что она тянется от плюс бесконечности до минус бесконечности (от +? до ??). На рис. 6.1 видна лишь малая часть волновой функции в небольшой области пространства, поскольку на конечном листе бумаги нельзя изобразить график от +? до ??. Волновая функция, представленная на этом рисунке, просто продолжается без изменений вправо и влево. Это означает, что квантовомеханическую частицу с чётко определённым значением импульса p мы с равной вероятностью найдём в любом месте вдоль оси x — горизонтальной оси на этом графике. По вертикальной оси отложена амплитуда вероятности обнаружить частицу в том или ином месте. Обе компоненты — действительная (пунктирная кривая) и мнимая (сплошная кривая) колеблются между положительными и отрицательными значениями. У обеих есть места, где они обращаются в нуль.

Тот факт, что волновая функция колеблется между положительными и отрицательными значениями, не важен. Для квантовомеханического объяснения интерференции фотона на рис. 5.1 была введена борновская интерпретация волновой функции. Согласно этой интерпретации, вероятность обнаружить частицу в некоторой области пространства равна квадрату абсолютной величины волновой функции в этой области пространства. Возведённая в квадрат волновая функция может приобретать только положительные значения, точно так же как 22=4 и (?2)2=4, поскольку минус на минус даёт плюс. Обратите внимание, что на рис. 6.1, когда одна из двух волн обращается в нуль, другая волна находится на положительном или отрицательном максимуме. Когда одна волна мала, другая — велика. Когда волновая функция анализируется математически, то, как это видно из графика, абсолютная величина квадрата волновой функции оказывается одинаковой во всех точках оси x.

Абсолютная величина квадрата волновой функции для свободной частицы одинакова вдоль всей оси x — от +? до ??. Таким образом, вероятность обнаружить частицу в любом месте пространства одинакова. Частица с одинаковой вероятностью найдётся в точке x=10, в точке x=?1000000 или где угодно ещё. Представьте себя крошечным созданием, которое часто называют демоном Максвелла. Вы стоите рядом с частицей-волной, изображённой на рис. 6.1. Вы пытаетесь схватить частицу. С некоторой вероятностью она окажется у вас в руках. Если вы станете делать это снова и снова, то в зависимости от размеров вашей руки вы сможете в конце концов поймать частицу. При этом каждый раз вам придётся начинать её ловлю заново. Если вы переместитесь вдоль волны в другое место и повторите попытку, вероятность поймать частицу не изменится. Именно в этом состоит смысл одинаковой вероятности обнаружить частицу где угодно. Для демона Максвелла нет предпочтительного места ловли частицы. Все места равноценны.

Этот образ свободной частицы, которая описывается волновой функцией, задающей равную вероятность обнаружить частицу в любом месте, не очень-то согласуется с нашим классическим представлением о частицах. На рис. 2.5 показана классическая частица, обладающая в заданный момент времени определённым значением импульса и положением. Обсуждая фотоэлектрический эффект (см. рис. 4.3), Эйнштейн описывал свет как фотоны, которые являются квантами света. Один фотон «выбивает» один электрон, и этот электрон вылетает из куска металла. Это описание выглядит так, как будто и фотон и электрон являются частицами в понимании классической механики. Однако при обсуждении интерференции фотонов (см. рис. 5.1) потребовалось использовать интерпретацию Борна и описывать фотоны как волны амплитуды вероятности, когда половина вероятности приходится на каждое плечо интерферометра. На рис. 6.1 график волновой функции свободной частицы полностью делокализован, то есть растянут на всё пространство. Это описание одинаково как для фотона, так и для электрона.