Молекулы поглощают свет определённых цветов

We use cookies. Read the Privacy and Cookie Policy

Хотя частица в ящике не является физически реализуемой системой, свойства, обнаруженные в этой задаче, также присущи атомам и молекулам. При фотоэлектрическом эффекте энергия падающих фотонов столь велика, что из куска металла выбиваются электроны (см. главу 4). При достаточно большой энергии фотона его удар по молекуле также может привести к выбросу электрона. Однако в случае более низкой энергии фотонов при падении света на атом или молекулу он может поглощаться без испускания электронов. Внутренняя энергия атома или молекулы при этом возрастает, поскольку к ней добавляется энергия фотона.

Молекулы (и атомы) состоят из заряженных частиц: электронов, заряженных отрицательно, и атомных ядер, несущих положительный заряд. В видимом и ультрафиолетовом диапазонах, то есть при длине волны менее 700 нм, частота света очень велика. Колеблющееся электрическое поле света взаимодействует с заряженными частицами молекул. Электроны очень лёгкие, и поэтому им проще откликнуться на быстрые колебания электрического поля света видимого или ультрафиолетового диапазона. Поглощение видимого излучения и ультрафиолета вызвано увеличением энергии электронов в молекуле.

Вопрос состоит в том, какова длина световых волн, которые будут поглощаться молекулой? Это очень сложный вопрос для любой конкретной молекулы. Чтобы теоретически определить спектр поглощения молекулы, приходится выполнять огромное количество квантовомеханических расчётов. Тем не менее важные аспекты молекулярного поглощения света можно разобрать на основе задачи о частице в ящике. В качестве чрезвычайно упрощённой модели молекулы мы будем рассматривать одиночный электрон в ящике молекулярного размера. В конце мы подставим в формулы числа. Когда на электрон, находящийся в ящике (молекуле), никакой свет не падает, он пребывает в состоянии с наименьшей энергией, так называемом основном состоянии. Для частицы в ящике наименьшей энергии соответствует квантовое число n=1. При n=1

E=h2/8?m?L2.

Когда на молекулу попадает свет, фотон может быть поглощён. В этом случае общая энергия света убывает на величину энергии поглощённого фотона. Энергия должна сохраняться, что обеспечивается переходом электрона в более высокое энергетическое состояние, то есть он покидает основное состояние с наименьшим уровнем энергии и переходит на более высокий энергетический уровень. Однако этот более высокий энергетический уровень не может иметь произвольное значение энергии, поскольку энергетические уровни частицы в ящике (и в молекулах) квантуются. Самое низкое энергетическое состояние над основным уровнем соответствует квантовому числу n=2. Это состояние называется первым возбуждённым. Электрон возбуждается при поглощении фотона и переходит из основного состояния в первое возбуждённое. Энергия первого возбуждённого состояния (n=2) равна

E=4?h2/8?m?L2.

Энергия должна сохраняться. Это верно для классической механики и остаётся верным в квантовой механике. Вначале электрон находился в основном состоянии. Затем, после поглощения фотона, перешёл в возбуждённое состояние. Следовательно, для того чтобы соблюдался закон сохранения, энергия фотона должна быть равна разности между энергией возбуждённого состояния электрона и энергией его основного состояния. Только фотон с такой энергией может быть поглощён данной системой. Энергия фотона определяется длиной волны света. Следовательно, поглощаться может свет только некоторых определённых цветов.

Рисунок 8.7 иллюстрирует поглощение фотона. Стрелки показывают два разрешённых пути, по которым может поглотиться фотон. Их называют переходами. На рисунке отражены переходы из n=1 в n=2 и из n=1 в n=3. Чтобы фотон был поглощён, его энергия должна быть равна разности энергий двух квантовых уровней. Если энергия фотона не совпадает с разностью энергий двух квантовых уровней, он не может поглотиться.

Разность энергий ?E между энергетическим уровням перового возбуждённого состояния (n=2) и энергетическим уровнем основного состояния (n=1) равна

?E=(4?h2/8?m?L2)?(h2/8?m?L2),

?E=3?h2/8?m?L2.

Это энергия, которую должен иметь фотон, чтобы заставить электрон совершить переход из основного состояния в первое возбуждённое. Можно воспользоваться соотношением Планка E=h?? для энергии фотона, чтобы убедиться в том, что энергии ?E соответствует определённая частота света. Кроме того, поскольку произведение длины волны и частоты равно скорости света ???=c, можно найти длину волны (цвет) того света, который будет испытывать поглощение.

Рис. 8.7.Энергетические уровни частицы в ящике. n — квантовое число, энергия E выражена в единицах h2/8?m?L2. Стрелками обозначено поглощение фотонов, которое может привести к переходу электрона с низшего энергетического уровня n=1 на более высокие энергетические уровни n=2, n=3 и т. д. Чтобы фотон был поглощён, его энергия должна совпадать с разностью энергий квантовых уровней