Импульс свободной частицы в состоянии суперпозиции
Чему равен импульс свободной частицы, которая находится в суперпозиции собственных состояний импульса, как показано на рис. 6.5? Суперпозиция собственных состояний импульса означает, что мы просто складываем (накладываем друг на друга) группу волн (амплитуды вероятности), где каждой волне соответствует конкретное (собственное) значение импульса. При любом измерении любой характеристики — системы будет получено конкретное значение этой характеристики. Если мы измерим импульс частицы, то получим одно конкретное значение импульса. Природа возмущения, сопутствующего измерению абсолютно малого объекта, состоит в том, что состояние суперпозиции коллапсирует в одно-единственное собственное значение. Выполнение измерений меняет систему, переводя её из исходного состояния суперпозиции в одно из конкретных собственных значений. Именно это мы называем коллапсом.
При обсуждении задачи об интерференции говорилось, что если попытаться обнаружить, находится ли фотон в состоянии T1, поместив детектор в первое плечо интерферометра, то состояние суперпозиции, необходимое для интерференции, будет разрушено. Состояние суперпозиции T превратится либо в T1, либо в T2. Поскольку состояние T является суперпозицией в равных пропорциях T1 и T2, в половине измерений результатом будет обнаружение системы в состоянии T1, а в другой половине — T2. В каждом конкретном измерении невозможно заранее узнать, какой будет получен результат. Большое число измерений покажет, что суперпозиция имеет пропорцию 50:50, поскольку в половине случаев фотон обнаружится в первом плече прибора (состояние T1), а в половине случаев — во втором плече (состояние T2).
Суперпозиция собственных значений импульса, показанная на рис. 6.5, состоит из огромного (бесконечного) числа состояний, лежащих в диапазоне импульсов, характеризуемом шириной распределения ?p. Таким образом, существует широкий диапазон значений импульса, которые могут быть получены в любом отдельном измерении. Если выполнить единичное измерение, будет получено одно из множества этих значений.
Допустим, мы выполнили измерение и обнаружили, что импульс немного больше p0. Обозначим его p1, поскольку это наше первое измерение. В процессе выполнения измерения мы произвели возмущение системы, которым нельзя пренебречь. Она перешла из состояния суперпозиции в состояние с единственным собственным значением импульса p1. Таким образом, для выполнения ещё одного измерения понадобится начать всё сначала и подготовить частицу (систему) тем же способом, которым она была подготовлена изначально, чтобы получить такое же распределение импульсов.
Теперь выполняем второе измерение. На этот раз мы получаем значение, которое несколько меньше p0. Обозначим его p2. Вновь подготовим систему и выполним ещё одно измерение. Назовём результат p3. Каждый раз, выполняя измерения одинаково подготовленных систем, мы будем получать разные конкретные значения импульса. Заранее неизвестно, какое получится значение. Если выполнить очень много измерений, можно построить график вероятности получения различных значений p. Такой график даст распределение, подобное тому, что представлено на рис. 6.5. Невозможно предсказать, какое значение будет получено в отдельном измерении. Однако кое-что нам всё же известно. Весьма маловероятно, что будет получено значение p, которое намного больше или намного меньше p0, поскольку распределение имеет очень малую амплитуду на краях диапазона. Скорее всего, измеренное значение p будет находиться вблизи p0, потому что именно в этой части распределения велика амплитуда.