6. Размеры фотона и принцип неопределённости Гейзенберга

We use cookies. Read the Privacy and Cookie Policy

В главе 5 мы узнали, что фотон в интерферометре интерферирует сам с собой. Фотон в некотором смысле может находиться более чем в одном месте сразу. Положение фотона описывается волной амплитуды вероятности. Она не похожа на водяную, звуковую или даже классическую электромагнитную волну. Волна, ассоциируемая с фотоном (или с другими частицами вроде электронов), описывает вероятность обнаружения частицы в некоторой области пространства. В задаче с интерферометром (см. рис. 3.4 и 5.1) одиночный фотон находился одновременно в первом и во втором плечах прибора при равной вероятности обнаружить его в обеих этих областях пространства. Чтобы лучше понимать и описывать положение фотона, необходимо подробнее обсудить свойства волн. Нужно понять природу волн амплитуды вероятности, в особенности то, как они объединяются и что происходит, когда выполняются измерения.

Проще всего начать с задачи о свободной частице, которую мы обсуждали в главе 2. Свободная частица может быть фотоном, электроном или бейсбольным мячом. Свободной она является в том случае, если на неё не действуют никакие силы — нет ни гравитации, ни электрического или магнитного поля, ни фотонов, сталкивающихся с электроном, ни бейсбольных бит, ударяющих по мячу, ни сопротивления воздуха — ничего подобного. В отсутствие сил, действующих на частицу, она имеет строго определённый неизменный импульс. Таким образом, если она движется в определённом направлении, она будет просто продолжать двигаться в этом направлении. Можно выбрать для этого направления любое обозначение: пусть, например, это будет направление x. Представим себе график с горизонтальной осью x. Мы просто выберем направление этой оси x вдоль направления движения частицы. Обсуждая рис. 2.5, мы говорили о классической частице, движущейся вдоль оси x с классическим импульсом p. Здесь мы поговорим о квантовой частице с импульсом p.