§ 2. Примесные полупроводники
До сих пор мы говорили только о двух путях введения добавочных электронов в кристаллическую решетку, которая во всем остальном совершенно идеальна. Один путь — это впрыснуть электрон от внешнего источника, а другой — выбить связанный электрон из нейтрального атома, сотворив одновременно и электрон и дырку. Но можно внедрить электроны в зону проводимости кристалла совершенно иным способом. Представим себе кристалл германия, в котором один из атомов германия заменен атомом мышьяка. У атомов германия валентность равна 4, и кристаллическая структура контролируется четырьмя валентными электронами. А у мышьяка валентность равна 5. И вот оказывается, что отдельный атом мышьяка в состоянии засесть в решетке германия (потому что габариты у него как раз такие, как надо), но при этом он будет вынужден действовать как четырехвалентный атом, тратя четыре валентных электрона из своего запаса на создание кристаллических связей и отбрасывая пятый. Этот лишний электрон привязан к нему очень слабо — энергия связи менее 1/10 эв. При комнатной температуре электрон с легкостью раздобудет такую небольшую энергию у тепловой энергии кристалла и отправится на свой страх и риск блуждать по решетке на правах свободного электрона. Примесный атом наподобие мышьяка называется донорным узлом, потому что он может снабдить кристалл отрицательным носителем. Если кристалл германия выращивается из расплава, куда было добавлено небольшое количество мышьяка, то мышьяковые донорские пункты распределятся по всему кристаллу и у кристалла появится определенная плотность внедренных отрицательных носителей.
Могло бы показаться, что малейшее электрическое поле, приложенное к кристаллу, смело бы эти носители прочь. Но этого не случится, ведь каждый атом мышьяка в теле кристалла заряжен положительно. Чтобы весь кристалл оставался нейтральным, средняя плотность отрицательных носителей — электронов — должна быть равна плотности донорных узлов. Если вы приложите к граням этого кристалла два электрода и подключите их к батарейке, пойдет ток; но если с одного конца уносятся электроны-носители, то на другой конец должны поступать свежие электроны проводимости, так что средняя плотность электронов проводимости остается все время примерно равной плотности донорных узлов.
Поскольку донорные узлы заряжены положительно, у них должно наблюдаться стремление перехватывать некоторые из электронов проводимости, когда последние блуждают по кристаллу. Поэтому донорный узел должен действовать как раз как та ловушка, о которой мы говорили в предыдущем параграфе. Но если энергия захвата достаточно мала (как у мышьяка, например), то общее число захваченных в какой-то момент носителей должно составлять лишь малую часть их общего числа. Для полного понимания поведения полупроводников этот захват, конечно, следует иметь в виду. Однако мы в дальнейшем будем считать, что энергия захвата настолько низка, а температура так высока, что на донорных узлах нет электронов. Конечно, это всего-навсего приближение.
Можно также внедрить в кристалл германия атом примеси с валентностью 3, скажем атом алюминия. Этот атом пытается выдать себя за объект с валентностью 4, воруя добавочный электрон у соседей. Он может украсть электрон у одного из соседних атомов германия и оказаться в конце концов отрицательно заряженным атомом с эффективной валентностью 4. Конечно, когда он стащит у атома германия электрон, там остается дырка; и эта дырка начинает блуждать по кристаллу на правах положительного носителя. Атом примеси, который способен таким путем образовать дырку, называется акцептором от корня «акцепт» — принимать. Если кристалл германия или кристалл кремния выращен из расплава, в который была добавлена небольшая присадка алюминия, то в кристалле окажется определенная плотность дырок, которые действуют как положительные носители.
Когда к полупроводнику добавлена донорная или акцепторная примесь, мы говорим о «примесном» полупроводнике.
Когда кристалл германия с некоторым количеством внедренной донорной примеси находится при комнатной температуре, то электроны проводимости поставляются как донорными узлами, так и путем рождения электронно-дырочных пар за счет тепловой энергии. Естественно, электроны от обоих источников вполне эквивалентны друг другу, и в игру статистических процессов, ведущих к равновесию, входит их полное число Nn. Если температура не слишком низкая, то число отрицательных носителей, поставляемых атомами донорной примеси, примерно равно количеству имеющихся атомов примеси. При равновесии уравнение (12.4) еще обязано соблюдаться; произведение NnNp при данной температуре есть вполне определенное число. Это означает, что добавление донорной примеси, которое увеличивает число Nn, вызывает такое уменьшение количества Np положительных носителей, что NnNp не изменяется. Если концентрация примеси достаточно высока, то число Nn отрицательных носителей определяется количеством донорных узлов и почти не зависит от температуры — все изменения в экспоненте происходят за счет Nр, даже если оно много меньше Nn. В чистом в других отношениях кристалле с небольшой концентрацией донорной примеси будут преобладать отрицательные носители; такой материал называется полупроводником «n-типа».
Если в кристаллической решетке добавлена примесь акцепторного типа, то кое-какие из новых дырок, блуждая, начнут аннигилировать с некоторыми свободными электронами, создаваемыми тепловыми флуктуациями. Это будет продолжаться до тех пор, пока не выполнится уравнение (12.4). В равновесных условиях количество положительных носителей возрастает, а количество отрицательных убывает, поддерживая произведение постоянным. Материал с избытком положительных носителей называется полупроводником «p-типа».
Если к полупроводниковому кристаллу приложить пару электродов и присоединить их к источнику разницы потенциалов, то внутри кристалла появится электрическое поле. Оно вынудит двигаться положительные и отрицательные носители, и потечет электрический ток. Посмотрим сперва, что произойдет в материале n-типа, в котором имеется подавляющее большинство отрицательных носителей. В таком материале дырками можно пренебречь; они очень слабо скажутся на токе, потому что их мало. В идеальном кристалле при конечной температуре (а особенно в кристалле с примесями) электроны перемещаются не совсем беспрепятственно. С ними беспрерывно происходят столкновения, которые сбивают их с намеченного ими пути, т. е. меняют их импульс. Эти столкновения — те самые рассеяния, о которых мы толковали в предыдущей главе и которые происходят на неровностях кристаллической решетки. В материале n-типа главной причиной рассеяния служат те самые донорные узлы, которые поставляют носителей. Раз у электронов проводимости энергия на донорных узлах немного иная, то волны вероятности обязаны на этом месте рассеиваться. Но даже в идеально чистом кристалле бывают (при ненулевой температуре) нерегулярности решетки, вызванные тепловыми колебаниями. С классической точки зрения можно говорить, что атомы не выстроены точно в правильную решетку, а в любое мгновение немного сдвинуты со своих мест по причине тепловых колебаний. Энергия Е0, связывавшаяся по теории, изложенной в гл. 11, с каждой точкой решетки, чуть-чуть меняется от одного места к другому, так что волны амплитуды вероятности не передаются идеально, а каким-то неправильным образом рассеиваются. И при очень высоких температурах или для очень чистых веществ такое рассеяние может стать очень важным, но в большинстве примесных полупроводников, применяемых в практических устройствах, рассеяние происходит только за счет атомов примеси. Мы сейчас оценим величину электрической проводимости в таких веществах.
Если к полупроводнику n-типа приложить электрическое поле, то каждый отрицательный носитель приобретет в этом поле ускорение, набирая скорость до тех пор, пока не рассеется на одном из донорных узлов. Это означает, что носители, которые обычно движутся случайным образом, имея при этом тепловую энергию, начнут в среднем повышать свою скорость дрейфа вдоль линий электрического поля, вызвав ток через кристалл. Скорость дрейфа, как правило, по сравнению с типичными тепловыми скоростями очень мала, так что можно, прикидывая величину тока, принять, что от столкновения к столкновению среднее время странствий носителя постоянно. Допустим, что эффективный электрический заряд отрицательного носителя равен qn. Сила, действующая на носитель в электрическом поле ?, будет равна qn?. В гл. 43, §3 (вып. 4) мы как раз подсчитывали среднюю скорость дрейфа в таких условиях и нашли, что она равна F?/m, где F — сила, действующая на заряд; ? — среднее время свободного пробега между столкновениями, а m— масса. Вместо нее надо поставить эффективную массу, которую мы подсчитывали в предыдущей главе, но поскольку нас интересует только грубый расчет, то предположим, что эта эффективная масса во всех направлениях одинакова. Мы ее здесь обозначим mn. В этом приближении средняя скорость дрейфа будет равна
Зная скорость дрейфа, можно найти ток. Плотность электрического тока j равна просто числу носителей в единице объема, Nn, умноженному на среднюю скорость дрейфа и на заряд носителей. Поэтому плотность тока равна
Мы видим, что плотность тока пропорциональна электрическому полю; такие полупроводниковые материалы подчиняются закону Ома. Коэффициент пропорциональности между j и ?, или проводимость ?, равен
Для материалов n-типа проводимость в общем не зависит от температуры. Во-первых, общее число основных носителей Nn определяется главным образом плотностью доноров в кристалле (пока температура не настолько низка, чтобы позволять атомам захватить чересчур много носителей), а, во-вторых, среднее время от соударения к соударению, ?n, регулируется главным образом плотностью атомов примеси, а она, ясное дело, от температуры не зависит.
Те же рассуждения можно приложить к веществу p-типа, переменив только значения параметров, которые появляются в (12.7). Если в одно и то же время имеется сравнимое количество отрицательных и положительных носителей, то вклады носителей обоего рода надо сложить. Полная проводимость определится из
Для очень чистых веществ Nр и Nn примерно равны. Они будут меньше, чем у материалов с примесями, так что и проводимость будет меньше. Кроме того, они будут резко меняться с температурой (по закону ехр(-Ещели/?T)), так что проводимость с температурой может меняться чрезвычайно быстро.