§ 2. Уравнение непрерывности для вероятностей

Перехожу теперь ко второму пункту. Важную сторону уравнения Шредингера отдельной частицы составляет идея о том, что вероятность обнаружить частицу в каком-то месте определяется квадратом абсолютной величины волновой функции. Для квантовой механики характерно также то, что вероятность сохраняется локально (т. е. в каждом отдельном месте). Когда вероятность обнаружить электрон в таком-то месте убывает, а вероятность обнаружить его в каком-то другом месте возрастает (так что полная вероятность не меняется), то что-то в промежутке между этими местами должно было произойти. Иными словами, электрон обладает непрерывностью в том смысле, что если вероятность спадает в одном месте и возрастает в другом, то между этими местами должно что-то протекать. Так, если вы между ними поставите стенку, то это скажется на вероятностях и они станут не такими, как были. Следовательно, одно только сохранение вероятности не есть полная формулировка закона сохранения, все равно как одно только сохранение энергии не обладает такой глубиной и не представляет такой важности, как локальное сохранение энергии [см. гл. 27, § 1 (вып. 6)]. Если энергия исчезает, то этому должен соответствовать отток энергии от этого места. Вот и у вероятности хотелось бы обнаружить такой же «ток». Хотелось бы, чтобы было так: если где-нибудь переменится плотность вероятности (вероятность обнаружить что-то там такое в единице объема), то чтобы можно было считать, что вероятность откуда-то сюда притекла (или утекла отсюда куда-то еще). Такой ток был бы вектором, который можно было бы толковать следующим образом: его x-компонента была бы чистой вероятностью (в секунду и на единицу объема) того, что частица пройдет в направлении х через плоскость, параллельную плоскости yz. Проход в направлении +x считается положительным потоком, а проход в обратную сторону — отрицательным потоком.

Существует ли такой ток? Вы знаете, что плотность вероятности P(r, t) выражается через волновую функцию

(19.7)

И вот, я спрашиваю: существует ли такой ток J, что

(19.8)

Если я продифференцирую (19.7) по времени, то получу два слагаемых

(19.9)

Теперь для ??/?t возьмите уравнение Шредингера — уравнение (19.3); кроме того, комплексно его сопрягите, т. е. перемените знак при каждом i, чтобы получить ??*/?t. У вас выйдет

(19.10)

Члены с потенциальной энергией и многие другие члены взаимно уничтожатся. А то, что останется, оказывается, действительно можно записать в виде полной дивергенции. Все уравнение целиком эквивалентно уравнению

(19.11)

Не так уж сложно, как кажется на первый взгляд. Это симметричная комбинация из ?*, умноженного на некоторую операцию над ?, плюс ?, умноженное на комплексно сопряженную операцию над ?*. Это просто некоторая величина плюс комплексно сопряженная ей величина, так что все вместе (как и положено быть) вещественно. Операция запоминается так: это попросту оператор импульса ^? минус qA.. Ток из (19.8) я могу записать в виде

(19.12)

Тогда это и есть тот ток J, который удовлетворяет уравнению (19.8).

Уравнение (19.8) показывает, что вероятность сохраняется локально. Если частица исчезает из одной области, то она не может оказаться в другой без того, чтобы что-то не протекло в промежутке между областями. Вообразите, что первая область окружена замкнутой поверхностью, которая проведена так далеко, что имеется нулевая вероятность обнаружить на ней электрон. Полная вероятность обнаружить электрон где-то внутри поверхности равна объемному интегралу от Р. Но, согласно теореме Гаусса, объемный интеграл от дивергенции J равняется поверхностному интегралу от J. Если ? на поверхности равно нулю, то (19.12) утверждает, что и J есть нуль; значит, полная вероятность отыскать частицу внутри поверхности не может измениться. Только тогда, когда часть вероятности достигает границы, какая-то ее часть может вытечь наружу. Мы вправе говорить, что она выбирается наружу только через поверхность— это и есть локальная сохраняемость.