§ 5. Красители

Приведем еще один химический пример явления, связанного с двумя состояниями, но на этот раз на уровне крупных молекул. Касается это теории красителей. У многих красителей, а именно у большинства искусственных красителей, есть одна общая характеристика — они обладают своего рода симметрией. На фиг. 8.9 изображен ион одного из красителей — фуксина (он дает пурпурный цвет).

Фиг. 8.9. Пара базисных состояний для молекулы красителя фуксин.

В молекуле есть три кольцевые структуры, две из которых — бензольные кольца. Третья не совсем совпадает с бензольным кольцом, потому что внутри кольца в ней только две двойные связи. На рисунке показаны две в равной степени подходящие схемы, и мы догадываемся, что их энергии должны быть равны. Но имеется еще и амплитуда того, что все электроны смогут переброситься из одного состояния в другое, передвинув местоположение «незаполненного» кольца в другой конец. Когда электронов так много, то амплитуда переброса несколько ниже, чем у бензола, и различие в энергиях двух стационарных состояний не так велико. Но тем не менее все равно имеется обычная пара стационарных состояний |I> и |II>, представляющая собой сумму и разность двух базисных состояний, показанных на рисунке. Энергетический промежуток между |I> и |II> оказывается равным энергии фотона в оптической области. Если молекулу осветить, возникает очень сильное поглощение при некоторой частоте и молекула покажется ярко окрашенной. Вот почему она краситель!

Другая интересная черта такой молекулы красителя — в двух изображенных базисных состояниях центры электрического заряда расположены в разных местах. В итоге молекула должна быть сильно подвержена действию внешнего электрического поля. Такой же эффект мы наблюдали в молекуле аммиака. Ясно, что его можно анализировать при помощи той же математики, если только известны числа Е0 и А. Их, вообще говоря, получают, накапливая опытные данные. Если проделать измерения со многими красителями, то часто можно догадаться, что произойдет с какой-то родственной молекулой красителя. Из-за сильного сдвига местоположения центра электрического заряда значение ? в формуле (7.55) велико, и вещество обладает большой вероятностью поглощения света с характеристической частотой 2A/?. Значит, вещество не просто окрашено, а окрашено очень густо — малое количество вещества поглощает много света.

Скорости переброса (и тем самым А) очень чувствительны ко всей структуре молекулы. Если изменить А, то изменится расщепление энергии и вместе с ним цвет красителя. Кроме того, молекулы не обязаны быть совершенно симметричными. Мы видели, что то же самое основное явление бывает и при небольших видоизменениях — даже когда имеется небольшая асимметрия. Небольшого изменения цвета можно добиваться введением в молекулы легких асимметрий. Так, другой важный краситель, малахитовая зелень, очень похож на фуксин, только у него две из имеющихся молекул водорода замещены на СН3. Цвет выходит другой, потому что А сдвинуто и скорость переброса электронов изменилась.