§ 1. Электроны и дырки в полупроводниках

Одним из самых замечательных и волнующих открытий последних лет явилось применение физики твердого тела к технической разработке ряда электрических устройств, таких, как транзисторы. Изучение полупроводников привело к открытию их полезных свойств и ко множеству практических применений. В этой области все меняется так быстро, что рассказанное вам сегодня может через год оказаться уже неверным или, во всяком случае, неполным. И совершенно ясно, что, подробнее изучив такие вещества, мы со временем сумеем осуществить куда более удивительные вещи. Материал этой главы вам не понадобится для понимания следующих глав, но вам, вероятно, будет интересно убедиться, что по крайней мере кое-что из того, что вы изучили, как-то все же связано с практическим делом.

Полупроводников известно немало, но мы ограничимся теми, которые больше всего применяются сегодня в технике. К тому же они и изучены лучше других, так что разобравшись в них, мы до какой-то степени поймем и многие другие. Наиболее широко применяемые в настоящее время полупроводниковые вещества это кремний и германий. Эти элементы кристаллизуются в решетке алмазного типа — в такой кубической структуре, в которой атомы обладают четверной (тетраэдральной) связью со своими ближайшими соседями. При очень низких температурах (вблизи абсолютного нуля) они являются изоляторами, хотя при комнатной температуре они немного проводят электричество. Это не металлы; их называют полупроводниками.

Если каким-то образом в кристалл кремния или германия при низкой температуре мы введем добавочный электрон, то возникнет то, что описано в предыдущей главе. Такой электрон начнет блуждать по кристаллу, перепрыгивая с места, где стоит один атом, на место, где стоит другой. Мы рассмотрели только поведение атома в прямоугольной решетке, а для реальной решетки кремния или германия уравнения были бы другими. Но все существенное может стать ясным уже из результатов для прямоугольной решетки.

Как мы видели в гл. 11, у этих электронов энергии могут находиться только в определенной полосе значений, называемой зоной проводимости. В этой зоне энергия связана с волновым числом k амплитуды вероятности С [см. (11.24)] формулой

(12.1)

Разные A — это амплитуды прыжков в направлениях х, у и z, а а, b, с — это постоянные решетки (интервалы между узлами) в этих направлениях.

Для энергий возле дна зоны формулу (12.1) можно приблизительно записать так:

(12.2)

(см. гл. 11, § 4).

Если нас интересует движение электрона в некотором определенном направлении, так что отношение компонент k все время одно и то же, то энергия есть квадратичная функция волнового числа и, значит, импульса электрона. Можно написать

(12.3)

где ? — некоторая постоянная, и начертить график зависимости Е от k (фиг. 12.1).

Фиг. 12.1. Энергетическая диаграмма для электрона в кристалле изолятора.

Такой график мы будем называть «энергетической диаграммой». Электрон в определенном состоянии энергии и импульса можно на таком графике изобразить точкой (S на рисунке).

Мы уже упоминали в гл. 11, что такое же положение вещей возникнет, если мы уберем электрон из нейтрального изолятора. Тогда на это место сможет перепрыгнуть электрон от соседнего атома. Он заполнит «дырку», а сам оставит на том месте, где стоял, новую «дырку». Такое поведение мы можем описать, задав амплитуду того, что дырка окажется возле данного определенного атома, и говоря, что дырка может прыгать от атома к атому. (Причем ясно, что амплитуда А того, что дырка перепрыгивает от атома а к атому b, в точности равна амплитуде того, что электрон от атома b прыгает в дырку от атома а.)

Математика для дырки такая же, как для добавочного электрона, и мы опять обнаруживаем, что энергия дырки связана с ее волновым числом уравнением, в точности совпадающим с (12.1) и (12.2), но, конечно, с другими численными значениями амплитуд Ах, Ay и Аz. У дырки тоже есть энергия, связанная с волновым числом ее амплитуд вероятности. Энергия ее лежит в некоторой ограниченной зоне и близ дна зоны квадратично меняется с ростом волнового числа (или импульса) так же, как на фиг. 12.1. Повторяя наши рассуждения гл. 11, § 3, мы обнаружим, что дырка тоже ведет себя как классическая частица с какой-то определенной эффективной массой, с той только разницей, что в некубических кристаллах масса зависит от направления движения. Итак, дырка напоминает частицу с положительным зарядом, движущуюся сквозь кристалл. Заряд частицы-дырки положителен, потому что она сосредоточена в том месте, где нет электрона; и когда она движется в какую-то сторону, то на самом деле это в обратную сторону движутся электроны.

Если в нейтральный кристалл поместить несколько электронов, то их движение будет очень похоже на движение атомов в газе, находящемся под низким давлением. Если их не слишком много, их взаимодействием можно будет пренебречь. Если затем приложить к кристаллу электрическое поле, то электроны начнут двигаться и потечет электрический ток. В принципе они должны очутиться на краю кристалла и, если там имеется металлический электрод, перейти на него, оставив кристалл нейтральным.

Точно так же в кристалл можно было бы ввести множество дырок. Они бы начали повсюду бродить как попало. Если приложить электрическое поле, то они потекут к отрицательному электроду и затем их можно было бы «снять» с него, что и происходит, когда их нейтрализуют электроны с металлического электрода.

Электроны и дырки могут оказаться в кристалле одновременно. Если их опять не очень много, то странствовать они будут независимо. В электрическом поле все они будут давать свой вклад в общий ток. По очевидной причине электроны называют отрицательными носителями, а дырки — положительными носителями.

До сих пор мы считали, что электроны внесены в кристалл извне или (для образования дырки) удалены из него. Но можно также «создать» пару электрон—дырка, удалив из нейтрального атома связанный электрон и поместив его в том же кристалле на некотором расстоянии. Тогда у нас получатся свободный электрон и свободная дырка, и движение их будет таким, как мы описали.

Энергия, необходимая для того, чтобы поместить электрон в состояние S (мы говорим: чтобы «создать» состояние S),— это энергия Е-, показанная на фиг. 12.2.

Фиг. 12.2. Энергия Е, требуемая для «рождения» свободного электрона.

Это некоторая энергия, превышающая Е-мин. Энергия, необходимая для того, чтобы «создать» дырку в каком-то состоянии S',— это энергия Е+ (фиг. 12.3), которая на какую-то долю выше, чем Е (=Е+мин).

Фиг. 12.3. Энергия Е+, требуемая для «рождения» дырки в состоянии S'.

А чтобы создать пару в состояниях S и S', потребуется просто энергия Е-+Е+.

Образование пар — это, как мы увидим позже, очень частый процесс, и многие люди предпочитают помещать фиг. 12.2 и 12.3 на один чертеж, причем энергию дырок откладывают вниз, хотя, конечно, эта энергия положительна. На фиг. 12.4 мы объединили эти два графика.

Фиг. 12.4. Энергетические диаграммы для электрона и дырки.

Преимущества такого графика в том, что энергия Eпары=Е-+Е+, требуемая для образования пары (электрона в S и дырки в S'), дается попросту расстоянием по вертикали между S и S', как показано на фиг. 12.4. Наименьшая энергия, требуемая для образования пары, называется энергетической шириной, или шириной щели, и равняется E-мин+E+мин.

Иногда вам может встретиться и диаграмма попроще. Ее рисуют те, кому не интересна переменная k, называя ее диаграммой энергетических уровней. Эта диаграмма (она показана на фиг. 12.5) просто указывает допустимые энергии у электронов и дырок[48].

Фиг. 12.5. Диаграмма энергетических уровней для электронов и дырок.

Как создается пара электрон—дырка? Есть несколько способов. Например, световые фотоны (или рентгеновские лучи) могут поглотиться и образовать пару, если только энергия фотона больше энергетической ширины. Быстрота образования пар пропорциональна интенсивности света. Если прижать к торцам кристалла два электрода и приложить «смещающее» напряжение, то электроны и дырки притянутся к электродам. Ток в цепи будет пропорционален силе света. Этот механизм ответствен за явление фотопроводимости и за работу фотоэлементов. Пары электрон — дырка могут образоваться также частицами высоких энергий. Когда быстро движущаяся заряженная частица (например, протон или пион с энергией в десятки и сотни Мэв) пролетает сквозь кристалл, ее электрическое поле может вырвать электроны из их связанных состояний, образуя пары электрон — дырка. Подобные явления сотнями и тысячами происходят на каждом миллиметре следа. После того как частица пройдет, можно собрать носители и тем самым вызвать электрический импульс. Перед вами механизм того, что разыгрывается в полупроводниковых счетчиках, в последнее время используемых в опытах по ядерной физике. Для таких счетчиков полупроводники не нужны, их можно изготовлять и из кристаллических изоляторов. Так и было на самом деле: первый из таких счетчиков был изготовлен из алмаза, который при комнатных температурах является изолятором. Но нужны очень чистые кристаллы, если мы хотим, чтобы электроны и дырки могли добираться до электродов, не боясь захвата. Потому и используются кремний и германий, что образцы этих полупроводников разумных размеров (порядка сантиметра) можно получать большой чистоты.

До сих пор мы касались только свойств полупроводниковых кристаллов при температурах около абсолютного нуля. При любой ненулевой температуре имеется еще другой механизм создания пар электрон — дырка. Энергией пару может снабдить тепловая энергия кристалла. Тепловые колебания кристалла могут передавать паре свою энергию, вызывая «самопроизвольное» рождение пар.

Вероятность (в единицу времени) того, что энергия, достигающая величины энергетической щели Eщели, сосредоточится в месте расположения одного из атомов, пропорциональна eхр(-Ещели/?T), где T — температура, а ? — постоянная Больцмана [см. гл. 40 (вып. 4)]. Вблизи абсолютного нуля вероятность эта мало заметна, но по мере роста температуры вероятность образования таких пар возрастает. Образование пар при любой конечной температуре должно продолжаться без конца, давая все время с постоянной скоростью все новые и новые положительные и отрицательные носители. Конечно, на самом деле этого не будет, потому что через мгновение электроны случайно снова повстречаются с дырками, электрон скатится в дырку, а освобожденная энергия перейдет к решетке. Мы скажем, что электрон с дыркой «аннигилировали». Имеется определенная вероятность того, что дырка встретится с электроном и оба они друг друга уничтожат.

Если количество электронов в единице объема есть Nn (n означает негативных, или отрицательных, носителей), а плотность положительных (позитивных) носителей Np, то вероятность того, что за единицу времени электрон с дыркой встретятся и проаннигилируют, пропорциональна произведению NnNp. При равновесии эта скорость должна равняться скорости, с какой образуются пары. Стало быть, при равновесии произведение NnNp должно равняться произведению некоторой постоянной на больцмановский множитель

(12.4)

Говоря о постоянной, мы имеем в виду ее примерное постоянство. Более полная теория, учитывающая различные детали того, как электроны с дырками «находят» друг друга, свидетельствует, что «постоянная» слегка зависит и от температуры; но главная зависимость от температуры лежит все же в экспоненте.

Возьмем, например, чистое вещество, первоначально бывшее нейтральным. При конечной температуре можно ожидать, что число положительных и отрицательных носителей будет одно и то же, Nn=Nр. Значит, каждое из этих чисел должно с температурой меняться как eхр(-Ещели/2?T). Изменение многих свойств полупроводника (например, его проводимости) определяется главным образом экспоненциальным множителем, потому что все другие факторы намного слабее зависят от температуры. Ширина щели для германия примерно равна 0,72 эв, а для кремния 1,1 эв.

При комнатной температуре ?T составляет около 1/40 эв. При таких температурах уже есть достаточно дырок и электронов чтобы обеспечить заметную проводимость, тогда как, скажем, при 30°К (одной десятой комнатной температуры) проводимость незаметна. Ширина щели у алмаза равна 6—7 эв, поэтому при комнатной температуре алмаз — хороший изолятор.